
PERIYAR UNIVERSITY

NAAC 'A++' Grade - State University - NIRF Rank 56 – State Public University Rank 25

SALEM - 636 011, Tamil Nadu, India.

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

BACHELOR OF COMPUTER SCIENCE

SEMESTER - I

COURSE: PYTHON PROGRAMMING

(Candidates admitted from 2024 onwards)

CDOE –ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

B.Sc., Computer Science 2024 admission onwards

CORE – I

Python Programming

Centre for Distance and Online Education (CDOE)
Periyar University, Salem – 11.

Prepared by:

CDOE –ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

SYLLABUS

PYTHON PROGRAMMING

Unit I : Basics of Python Programming: History of Python-Features of Python-Literal

-Constants-Variables - Identifiers–Keywords-Built-in Data Types-Output Statements

– Input Statements-Comments – Indentation- Operators-Expressions -Type

conversions. Python Arrays: Defining and Processing Arrays – Array methods.

Unit II: Control Statements: Selection/Conditional Branching statements: if, if-else,

nested if and if-elif-else statements. Iterative Statements: while loop, for loop, else

suite in loop and nested loops. Jump Statements: break, continue and pass

statements.

Unit III: Functions: Function Definition – Function Call – Variable Scope and its

Lifetime-Return Statement. Function Arguments: Required Arguments, Keyword

Arguments, Default Arguments and Variable Length Arguments- Recursion. Python

Strings: String operations- Immutable Strings - Built-in String Methods and Functions

- String Comparison. Modules: import statement- The Python module – dir() function

– Modules and Namespace – Defining our own modules

Unit IV : Lists: Creating a list -Access values in List-Updating values in Lists-Nested

lists - Basic list operations- List Methods. Tuples: Creating, Accessing, Updating and

Deleting Elements in a tuple – Nested tuples– Difference between lists and tuples.

Dictionaries: Creating, Accessing, Updating and Deleting Elements in a Dictionary –

Dictionary Functions and Methods - Difference between Lists and Dictionaries.

Unit V : Python File Handling: Types of files in Python - Opening and Closing files-

Reading and Writing files: write() and writelines() methods- append() method –

read() and readlines() methods – with keyword – Splitting words – File methods - File

Positions- Renaming and deleting files

CDOE –ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

TABLE OF CONTENTS

UNIT TOPICS PAGE

1 Basics of Python Programming and Python Arrays 1

2 Control Statements and Jump Statements 47

3 Functions, Strings and Modules 66

4 Lists, Tuples and Dictionaries 94

5 Python File Handling 122

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

1 Periyar University – CDOE| Self-Learning Material

PYTHON PROGRAMMING

UNIT 1 – PYTHON PROGRAMMING

Basics of Python Programming: History of Python-Features of Python-

Literal -Constants-Variables - Identifiers–Keywords-Built-in Data Types-

Output Statements – Input Statements-Comments – Indentation-

Operators-Expressions -Type conversions. Python Arrays: Defining and

Processing Arrays – Array methods.

Basics of Python Programming and Array

Section Topic Page No.

UNIT - I

Unit Objectives

Section 1.1 Basics of Python Programming 2

1.1.1 History of Python 2

1.1.2 Features of Python 3

1.1.3 Literal Constants 5

1.1.4 Variables 7

1.1.5 Identifiers 10

1.1.6 Keywords 10

1.1.7 Built-in Data Types 11

1.1.8 Output Statements 15

1.1.9 Input Statements 18

1.1.10 Comments 19

1.1.11 Indentation 20

1.1.12 Operators 22

1.1.13 Expressions 33

1.1.14 Type conversions 35

 Let Us Sum Up

 Check Your Progress

Section 1.2 Python Arrays 37

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

2 Periyar University – CDOE| Self-Learning Material

Unit Objectives

In this unit, leaners will have a brief understanding of the history and features of

python programming. The basic concepts that are need for any programming languages

like constants, literals, keywords and how to declare a variable in python will be

discussed. Along with the basic data types that are supported in python programming.

The way how to use the input, output statement and how data type conversion of

variables in done in python. Finally the unit ends with how to create and process Arrays

and the methods used for array in python.

SECTION 1.1: BASICS OF PYTHON

1.1.1 – History of Python

Python was first developed by Guido van Rossum in the late 80‟s and early 90‟s

at the National Research Institute for Mathematics and Computer Science in the

Netherlands. It has been derived from many languages such as ABC, Modula-3, C,

C++, Algol68, SmallTalk, UNIX shell and other scripting languages.Since early 90‟s

Python has been improved tremendously. Its version 1.0 was released in 1991, which

1.2.1 Defining and Processing Arrays 37

1.2.2 Array methods 40

 Let Us Sum Up

 Check Your Progress

1.8 Unit- Summary 43

1.9 Glossary 44

1.10 Self- Assessment Questions 44

1.11 Exercises 44

1.12 Quiz - Answers 45

1.13 Suggested Readings 45

1.14 Open Source E-Content Links 46

1.15 References 46

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

3 Periyar University – CDOE| Self-Learning Material

introduced several new functional programming tools. While version 2.0included list

comprehension was released in 2000 by the Be Open Python Labs team.

Python 2.7 which is still used today will be supported till 2020. Currently Python

3.6.4 is already available. The newer versions have better features like flexible string

representation etc., Although Python is copyrighted, its source code is available under

GNU General Public License (GPL) like that Perl. Python is currently maintained by a

core development team at the institute which is directed by Guido Van Rossum. These

days, from data to web development, Python has emerged as very powerful and

popular language. It would be surprising to know that python is actually older than Java,

R and JavaScript.

1.1.2 – Features of Python

 Simple: Reading a program written in Python feels almost like reading english.

The main strength of Python which allows programmer to concentrate on the

solution to the problem rather than language itself.

 Easy to Learn: Python program is clearly defined and easily readable. The

structure of the program is simple. It uses few keywords and clearly defined

syntax.

 Versatile: Python supports development of wide range of applications such as

simple text processing, WWW browsers and games etc..

 Free and Open Source: It is a Open Source Software. So, anyone can freely

distribute it, read the source code, edit it, and even use the code to write new

(free) programs.

 High-level Language: While writing programs in Python we do not worry about

the low-level details like managing memory used by the program.

 Interactive: Programs in Python work in interactive mode which allows

interactive testing and debugging of pieces of code. Programmer can easily

interact with the interpreter directly at the python prompt to write their programs.

 Portable: It is a portable language and hence the programs behave the same on

wide variety of hardware platforms with different operating systems.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

4 Periyar University – CDOE| Self-Learning Material

 Object Oriented: Python supports object-oriented as well as procedure-oriented

style of programming .While object-oriented technique encapsulates data and

functionality with in objects, Procedure oriented at other hand, builds programs

around procedure or functions.

 Interpreted: Python is processed at runtime by interpreter. So, there is no need

to compile a program before executing it. You can simply run the program.

Basically python converts source program into intermediate form called byte

code.

 Dynamic and strongly typed language: Python is strongly typed as the

interpreter keeps track of all variables types. It's also very dynamic as it rarely

uses what it knows to limit variable usage.

 Extensible: Since Python is open source software, anyone can add low-level

modules to the python interpreter. These modules enable programmers to add to

or customize their tools to work more efficiently.

 Embeddable: Programmers can embed Python within their C, C++, COM,

ActiveX, CORBA and Java Programs to give „scripting „capability for users.

 Extensive Libraries: Python has huge set of libraries that is easily portable

across different platforms with different operating systems.

 Easy maintenance: Code Written in Python is easy to maintain.

 Secure: This Programming language is secure for tampering. Modules can be

distributed to prevent altering of source code. Additionally, Security checks can

be easily added to implement additional security features.

 Robust: Python Programmers cannot manipulate memory directly, errors are

raised as exceptions that can be catch and handled by the program code. For

every syntactical mistake, a simple and easy to interpret message is displayed.

All these make python robust.

 Multi-threaded: Python supports executing more than one process of a program

simultaneously with the help of Multi Threading.

 Garbage Collection: The Python run-time environment handles garbage

collection of all python objects. For this, a reference counter is maintained to

assure that no object that is currently in use is deleted.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

5 Periyar University – CDOE| Self-Learning Material

1.1.3 – Literal Constants

Python literals or constants are the notation for representing a fixed value in

source code. In contrast to variables, literals (123, 4.3, "Hello") are static values or you

can say constants which do not change throughout the operation of the program or

application.

Example

x=10

Here 10 is a literal as numeric value representing 10, which is directly stored in

memory. However,

y=x*2

Here, even if the expression evaluates to 20, it is not literally included in source

code. You can also declare an int object with built-in int() function. However, this is also

an indirect way of instantiation and not with literal.

x=(int)10

Number

The value of a literal constant can be used directly in programs. For example, 7,

3.9, 'A', and "Hello" are literal constants. Numbers refers to a numeric value. You can

use four types of numbers in Python program- integers, long integers, floating point and

complex numbers. Numbers like 5 or other whole numbers are referred to as integers.

Bigger whole numbers are called long integers.

For example, 535633629843L is a long integer. Numbers like are 3.23 and

91.5E-2 are termed as floating point numbers. Numbers of a + bj form (like -3 + 7j)

are complex numbers.

>>>50+40-35

55

>>>12 * 10
120

>>>96/12
8.0

>>>(-30 * 4) +500
380

>>>78/5
15

>>>78%5
3

>>>152.78//3.0
50.0

>>>152.78%3.0
2.780000000001

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

6 Periyar University – CDOE| Self-Learning Material

A Literals Boolean type can have one of the two values- True or False.

>>>bvar=True
>>>print(bvar)
True

>>>20==30
False

>>>”Python”
True

>>>20 != 20
False

>>>”Python” != “Python3.3”
True

>>>30>50
False

>>>90<=90
True

>>>87==87.0
False

>>>87>87.0
false

>>> 87<87.0
False

>>>87>=87.0
True

>>>87<=87.0
True

String

A string is a group of characters. Using Single Quotes ('): For example, a string

can be written as 'HELLO'. Using Double Quotes ("): Strings in double quotes are

exactly same as those in single quotes. Therefore, 'HELLO' is same as "HELLO". Using

Triple Quotes (''' '''): You can specify multi-line strings using triple quotes. You can use

as many single quotes and double quotes as you want in a string within triple quotes.

>>>”Hello”

‘Hello’

>>>’Hello’

‘Hello’

>>>’’’Hello’’’

‘Hello’

Unicode Strings

Unicode is a standard way of writing international text. That is,if you want to write

some text in your native language like hindi,then you need to have a Unicode-enable

text editor. Python allows you to specify Unicode text by prefixing the string with a u or

U. For Example: u”Sample Unicode string” Note :The „U‟ prefix specifies that the file

contains text written in language other than English

Escape Sequences

Some characters (like ", \) cannot be directly included in a string. Such characters

must be escaped by placing a backslash before them.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

7 Periyar University – CDOE| Self-Learning Material

Raw Strings

If you want to specify a string that should not handle any escape sequences and

want to display exactly as specified then you need to specify that string as a raw string.

A raw string is specified by prefixing r or R to the string.

Example
>>>print(R ”What\’s is your name?”)

what\’s is your name?

1.1.4 – Variables

In programming, a variable is a container (storage area) to hold data. Identifiers

are things like variables. An Identifier is utilized to recognize the literals utilized in the

program. The standards to name an identifier are given underneath.

 The variable's first character must be an underscore or alphabet (_).

 Every one of the characters with the exception of the main person might be a

letter set of lower-case(a-z), capitalized (A-Z), highlight, or digit (0-9).

 White space and special characters (!, @, #, %, etc.) are not allowed in the

identifier name. ^, &, *).

 Identifier name should not be like any watchword characterized in the language.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

8 Periyar University – CDOE| Self-Learning Material

 Names of identifiers are case-sensitive; for instance, my name, and MyName

isn't something very similar.

Examples of valid identifiers: a123, _n, n_9, etc.

Examples of invalid identifiers: 1a, n%4, n 9, etc.

Declaring Variable and Assigning Values

Python doesn't tie us to pronounce a variable prior to involving it in the

application. It permits us to make a variable at the necessary time. In Python, we don't

have to explicitly declare variables. The variable is declared automatically whenever a

value is added to it. The equal (=) operator is utilized to assign worth to a variable.

Example
number = 10

site_name = 'programiz.pro'

print(site_name)

Output
'programiz.pro'

Example: Assigning multiple values to multiple variables
a, b, c = 5, 3.2, 'Hello'

x=y=z=50

print (a) # prints 5

print (b) # prints 3.2

print (c) # prints Hello

Local Variable

The variables that are declared within the function and have scope within the

function are known as local variables. Let's examine the following illustration.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

9 Periyar University – CDOE| Self-Learning Material

Example -
def add(): # Defining local variables. They has scope only within a function

 a = 20

 b = 30

 c = a + b

 print("The sum is:", c)

add() # Calling a function

Output:
The sum is: 50

Global Variables

Global variables can be utilized all through the program, and its extension is in

the whole program. Global variables can be used inside or outside the function. By

default, a variable declared outside of the function serves as the global variable. Python

gives the worldwide catchphrase to utilize worldwide variable inside the capability. The

function treats it as a local variable if we don't use the global keyword.

Example -
x = 101 # Declare a variable and initialize it

def mainFunction(): # Global variable in function

 # printing a global variable

 global x

 print(x)

 # modifying a global variable

 x = 'Welcome To Python’

 print(x)

mainFunction()

print(x)

Output:

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

10 Periyar University – CDOE| Self-Learning Material

101

Welcome To Python

Welcome To Python

1.1.5 – Identifiers

Identifiers (also referred to as names) are described by the following lexical

definitions. A Python identifier is the name given to a variable, function, class, module or

other object. An identifier can begin with an alphabet (A – Z or a – z), or an underscore

(_) and can include any number of letters, digits, or underscores. Spaces are not

allowed. Python will not accept @, $ and % as identifiers. Furthermore, Python is a

case-sensitive language. Thus, Hello and hello both are different identifiers. In Python, a

class name will always start with a capital letter. Examples of Valid and Invalid Names

for Creating Identifiers are :

Valid

MyName
My_Name

Your_Name

Invalid
My Name (Space is not allowed)

 3dfig (cannot start with a digit)

Your#Name (Only alphabetic character, Underscore (_) and numeric are allowed

1.1.6 – Keywords

Python has a list of reserved words known as keywords. Every keyword has a

specific purpose and use. In the upcoming chapters, we will look into the use of these

keywords in programming. A list of reserved keywords in Python are

and del from None True

as elif global nonlocal try

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

11 Periyar University – CDOE| Self-Learning Material

assert else if not while

break except import or with

class False in pass yield

continue finally is raise

def for lambda return

1.1.7 – Built –in data types

The data stored in the memory can be of many types. For example, a person’s

name is stored as an alphabetic value and its address is stored as an alphanumeric

value. Sometimes, we also need to store answer in terms of only ‘yes’ or ‘no’, i.e., true

or false. This type of data is known as Boolean data.

 Python has six basic data types which are as follows:

1. Numeric

2. String

3. List

4. Tuple

5. Dictionary

6. Boolean

Numeric
 Numeric data can be broadly divided into integers and real numbers (i.e., fractional

numbers). Integers can themselves be positive or negative. Unlike many other

programming languages, Python does not have any upper bound on the size of

integers. The real numbers or fractional numbers are called floating point numbers in

programming languages. Such floating point numbers contain a decimal and a fractional

part.

Example
>>> num1=2

>>>num2=2.5

>>>num1

 2 # Output

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

12 Periyar University – CDOE| Self-Learning Material

>>>num2

2.5 # Output

 Note : In all the earlier versions of Python 3, slash (/) operator worked differently. When

both numerator and denominator are integers, then the result will be an integer. The

slash operator removes the fraction part.

The result becomes a floating number when either the numerator or the denominator is

a floating number. When both the numerator and the denominator are floating numbers,

the result is again a floating number. The division operator provides accurate results

even when both the numerator and the denominator are integers.

Example
>>> 5/2

1.5 # Output

String
Besides numbers, strings are another important data type. Single quotes or

double quotes are used to represent strings. A string in Python can be a series or a

sequence of alphabets, numerals and special characters. Similar to C, the first

character of a string has an index 0.

 There are many operations that can be performed on a string. There are several

operators such as slice operator ([]) and [:]), concatenation operator (+), repetition

operator (*), etc. Slicing is used to take out a subset of the string, concatenation is used

to combine two or more than two strings and repetition is used to repeat the same string

several times.

Example
>>>sample_string =”Hello” # store string value

>>>sample_string # display string value

 ‘Hello’ # Output

>>>sample_string + “World” # use of + operator

‘HelloWorld’ # Output

>>>sample_string * 3 # use of * operator

‘HelloHelloHello’ # Output

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

13 Periyar University – CDOE| Self-Learning Material

Python also provides slice operators ([] and [:]) to extract substring from the

string. In Python, the indexing of the characters starts from 0; therefore, the index value

of the first character is 0.

 Syntax
sample_string[start : end <:step>] #step is optional

Example
>>>sample_string=”Hello”

>>>sample_string[1] # display 1st index element.

‘e’ # Output

>>>sample_string[0:2] # display 0 to 1st index elements

‘He’ # Output

>>>sample_string = "HelloWorld"

>>>sample_string[1:8:2] # display all the alternate characters between index 1

to 8. ie, 1,3,5,7

 'elWr' # Output

List
List is the most used data type in Python. A list can contain the same type of

items. Alternatively, a listcan also contain different types of items. A list is an ordered

and indexable sequence. To declare a list in Python, we need to separate the items

using commas and enclose them within square brackets([]). The list is somewhat similar

to the array in C language. However, an array can contain only the same type of items

while a list can contain different types of items.

 Similar to the string data type, the list also has plus (+), asterisk (*) and slicing [:]

operators for concatenation, repetition and sub-list, respectively.

Example
>>>first=[1,”two”,3.0,”four”] # 1 list

>>>second=[“five”, 6] # 2 stnd list

>>>first # display 1

[1, ‘two’, 3.0, ‘four’] # Output

>>>first+secondst list # concatenate 1and 2 list

 [1, ‘two’, 3.0, ‘four’, ‘five’, 6] # Output

>>>second * 3 # repeat 2nd list

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

14 Periyar University – CDOE| Self-Learning Material

[‘five’, 6, ‘five’, 6, ‘five’, 6] # Output

>>>first[0:2] # display sublist

[1, ‘two’]

Tuple
Similar to a list, a tuple is also used to store sequence of items. Like a list, a tuple

consists of items separated by commas. However, tuples are enclosed within

parentheses rather than within square brackets.

Example
>>>third=(7, “eight”,9, 10.0)

>>>third

(7, ‘eight’, 9, 10.0) # Output

Lists and tuples have the following differences:

 In lists, items are enclosed within square brackets [], whereas in tuples, items are

enclosed within parentheses ().

 Lists are mutable whereas Tuples are immutable. Tuples are read only lists. Once the

items are stored, the tuple cannot be modified.

Dictionary
It is the same as the hash table type. The order of elements in a dictionary is

undefined. But, we can iterate over the following:

1. The keys

2. The values

3. The items (key-value pairs) in a dictionary

 A Python dictionary is an unordered collection of key-value pairs. When we have the

large amount of data, the dictionary data type is used. Keys and values can be of any

type in a dictionary. Items in dictionary are enclosed in the curly-braces{} and separated

by the comma (,). A colon (:) is used o separate key from value. A key inside the square

bracket [] is used for accessing the dictionary items.

Example
>>> dict1 = {1:"first line", "second":2} # declare dictionary

>>>dict1[3] = "third line" # add new item

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

15 Periyar University – CDOE| Self-Learning Material

>>> dict1 # display dictionary

 {1: 'first line', 'second': 2, 3: 'third line'} #Output

>>>dict1.keys() # display dictionary keys

 [1, 'second', 3] # Output

>>>dict1.values() # display dictionary values

['first line', 2, 'third line'] # Output

Boolean
In a programming language, mostly data is stored in the form of alphanumeric

but sometimes we need to store the data in the form of ‘Yes’ or ‘No’. In terms of

programming language, Yes is similar to True and No is similar to False. This True and

False data is known as Boolean Data and the data types which stores this Boolean data

are known as Boolean Data Types.

Example
>>> a = True

>>>type(a)

<type ‘bool’>

>>> x = False

>>>type(x)

<type ‘bool’>

1.1.8 – Output Statements

Python print() function prints the message to the screen or any other standard

output device. In this article, we will cover about print() function in Python as well as it’s

various operations.

Syntax
print(value(s), sep= ‘ ‘, end = ‘\n’, file=file, flush=flush)

Parameters:
 value(s): Any value, and as many as you like. Will be converted to a string

before printed

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

16 Periyar University – CDOE| Self-Learning Material

 sep=’separator’ : (Optional) Specify how to separate the objects, if there is more

than one.Default :’ ‘

 end=’end’: (Optional) Specify what to print at the end.Default : ‘\n’

 file : (Optional) An object with a write method. Default :sys.stdout

 flush : (Optional) A Boolean, specifying if the output is flushed (True) or buffered

(False). Default: False

Return Type: It returns output to the screen.

Example
name = "John"

age = 30

print("Name:", name)

print("Age:", age)

Output:

Name: John

Age: 30

How print() works in Python?

You can pass variables, strings, numbers, or other data types as one or more

parameters when using the print() function. Then, these parameters are represented as

strings by their respective str() functions. To create a single output string, the

transformed strings are concatenated with spaces between them. In this code, we are

passing two parameters name and age to the print function

Example
name = "Alice"

age = 25

print("Hello, my name is", name, "and I am", age, "years old.")

Output
Hello, my name is Alice and I am 25 years old.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

17 Periyar University – CDOE| Self-Learning Material

String literals in Python’s print statement are primarily used to format or design

how a specific string appears when printed using the print() function.

 \n: This string literal is used to add a new blank line while printing a statement.

 “”: An empty quote (“”) is used to print an empty line.

>>>print("Python Programming \n is OOP.")

Python Programming

is OOP.

The end keyword is used to specify the content that is to be printed at the end of

the execution of the print() function. By default, it is set to “\n”, which leads to the

change of line after the execution of print() statement.

Example
#using print() with end and without end parameters.

This line will automatically add a new line before the next print statement

print ("Python Programming is OOP ")

This print() function ends with "**" as set in the end argument.

print ("Python Programming is OOP ", end= "&&")

print("Welcome to Python World")

Output:
Python Programming is OOP

Python Programming is OOP&&Welcome to Python World

Print concatenation

>>>print(‘Python Programming supports ' + OOP.')

Python Programming supports OOP

Print using formatting

>>>a,b,=10,1000

print('The value of a is {} and b is {}'.format(a,b))

The value of a is 10 and b is 1000

“sep” parameter in print()

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

18 Periyar University – CDOE| Self-Learning Material

The print() function can accept any number of positional arguments. To separate

these positional arguments, the keyword argument “sep” is used.

Example
a=12

b=12

c=2024

print(a,b,c,sep="-")

Output:
12-12-2024

1.1.9 – Input Statements

In a programming language, the input from keyboard by user plays the most

important role in executing a program. There is hardly any program which executes

without some input. The input in many programs is prompted by the user and the user

uses the keyboard in order to provide input for the program to execute. Python

programming language also provides the facility to user to provide input from keyboard.

Prompting the input from user in Python is through function has an optional

parameter, which is the prompt string. When the input() input() function. input() function

is called, in order to take input from the user then the execution of program halts and

waits for the user to provide an input. The input is given by the user through keyboard

and it is ended by the return key. input() function interprets the input provided by the

user, i.e. if user provides an integer value as input then the input function will return this

integer value. On the other hand, if the user has input a String, then the function will

return a string.

Example
>>>name = input(“What is your Name?”)

>>> print (“Hello “ + name + “!”)

 What is your Name? ‘John’

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

19 Periyar University – CDOE| Self-Learning Material

Hello John!

>>>age = input(“Enter your age? “)

>>> print age

 Enter your age? 32

32 #Output

>>>hobbies = input(“What are your hobbies? “)

>>>print hobby

What are your hobbies? [‘playing’, ‘travelling’] #Output

 [‘playing’, ‘travelling’]

>>>type(name)

<type ‘str’> #Output

1.1.10 – Comments

Just like other programming languages, Python allows you to add comments in

the code. Comments are used by the programmer to explain the piece of code to others

as well as to himself in a simple language. Every programming language makes use of

some special character for commenting, so does Python.

Python uses the hash character (#) for comments. Putting # before a text

ensures that the text will not be parsed by the interpreter. Comments do not affect the

programming part and the Python interpreter does not display any error message for

comments. Comments show up as it is in the programming. It is a good practice to use

comments for program documentation in your program so that it becomes easier for

other programmers to maintain or enhance the program when required.

Example : Commenting without the use of Hash mark (#)

>>> 8+9 addition

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

20 Periyar University – CDOE| Self-Learning Material

SyntaxError: invalid syntax # Output

In the above example, ‘addition’ is written without the Hash mark. As a result, the

interpreter accepts the word ‘addition’ as part of programming. Since ‘addition’ is not a

command in Python, an error message is displayed.

 Example : Commenting using Hash mark (#)

>>> 8+9 #addition

 17 # Output

Now, in this example, ‘addition’ is written with a Hash mark. Hence, the

interpreter understands it as a comment and does not display any error message.

1.1.11 – Indentation

Python relies on indentation to define the structure of code blocks, making it

unique among programming languages. Unlike languages that use explicit symbols or

braces to denote code blocks, Python uses whitespace, specifically indentation, to

determine the scope of statements.

In Python, indentation refers to the spacing at the beginning of a line of code that

determines its grouping and hierarchy within the program’s structure. Unlike many

programming languages that use braces ({}) or other explicit symbols to denote code

blocks, Python uses indentation to signify the beginning and end of blocks of code.

Rules of Indentation in Python

 Python’s default indentation spaces are four spaces. The number of spaces,

however, is entirely up to the user. However, a minimum of one space is required

to indent a statement.

 Indentation is not permitted on the first line of Python code.

 Python requires indentation to define statement blocks.

 A block of code must have a consistent number of spaces.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

21 Periyar University – CDOE| Self-Learning Material

 To indent in Python, whitespaces are preferred over tabs. Also, use either

whitespace or tabs to indent; mixing tabs and whitespaces in indentation can

result in incorrect indentation errors.

Example
site = 'prepbytes'

if site == 'prepbytes':

print('Logging on to prepbytes...')

else:

print('retype the URL.')

print('All set !')

Output

Logging on to prepbytes...

All set !

Example 2

j = 1

while(j<= 5):

print(j)

 j = j + 1

Output

1

2

3

4

5

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

22 Periyar University – CDOE| Self-Learning Material

1.1.12 – Operators

Operators are used to perform operations on variables and values. Python supports

following operators -

o Arithmetic operators

o Comparison operators

o Assignment Operators

o Logical Operators

o Bitwise Operators

o Membership Operators

o Identity Operators

Arithmetic Opertors

Arithmetic operators used between two operands for a particular operation.

There are many arithmetic operators. It includes the exponent (**) operator as well as

the + (addition), - (subtraction), * (multiplication), / (divide), % (reminder), and // (floor

division) operators.

Consider the following table for a detailed explanation of arithmetic operators.

Operator Description

+ (Addition) It is used to add two operands. For example, if a = 10, b = 10 =>a+b

= 20

- (Subtraction) It is used to subtract the second operand from the first operand. If the

first operand is less than the second operand, the value results

negative. For example, if a = 20, b = 5 => a - b = 15

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

23 Periyar University – CDOE| Self-Learning Material

/ (divide) It returns the quotient after dividing the first operand by the second

operand. For example, if a = 20, b = 10 => a/b = 2.0

*

(Multiplication)

It is used to multiply one operand with the other. For example, if a =

20, b = 4 => a * b = 80

% (reminder) It returns the reminder after dividing the first operand by the second

operand. For example, if a = 20, b = 10 =>a%b = 0

** (Exponent) As it calculates the first operand's power to the second operand, it is

an exponent operator.

// (Floor

division)

It provides the quotient's floor value, which is obtained by dividing the

two operands.

Example

a = 32 # Initialize the value of a

b = 6 # Initialize the value of b

print('Addition of two numbers:',a+b)

print('Subtraction of two numbers:',a-b)

print('Multiplication of two numbers:',a*b)

print('Division of two numbers:',a/b)

print('Reminder of two numbers:',a%b)

print('Exponent of two numbers:',a**b)

print('Floor division of two numbers:',a//b)

Output:

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

24 Periyar University – CDOE| Self-Learning Material

Addition of two numbers: 38

Subtraction of two numbers: 26

Multiplication of two numbers: 192

Division of two numbers: 5.333333333333333

Reminder of two numbers: 2

Exponent of two numbers: 1073741824

Floor division of two numbers: 5

Comparison Operators

Comparison operators mainly use for comparison purposes. Comparison

operators compare the values of the two operands and return a true or false Boolean

value in accordance. The example of comparison operators are ==, !=, <=, >=, >, <. In

the below table, we explain the works of the operators.

Operator Description

== If the value of two operands is equal, then the condition becomes true.

!= If the value of two operands is not equal, then the condition becomes

true.

<= The condition is met if the first operand is smaller than or equal to the

second operand.

>= The condition is met if the first operand is greater than or equal to the

second operand.

> If the first operand is greater than the second operand, then the

condition becomes true.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

25 Periyar University – CDOE| Self-Learning Material

< If the first operand is less than the second operand, then the condition

becomes true.

Example:

a = 32 # Initialize the value of a

b = 6 # Initialize the value of b

print('Two numbers are equal or not:',a==b)

print('Two numbers are not equal or not:',a!=b)

print('a is less than or equal to b:',a<=b)

print('a is greater than or equal to b:',a>=b)

print('a is greater b:',a>b)

print('a is less than b:',a<b)

Output:

Two numbers are equal or not: False

Two numbers are not equal or not: True

a is less than or equal to b: False

a is greater than or equal to b: True

a is greater b: True

a is less than b: False

Assignment Operators

Using the assignment operators, the right expression's value is assigned to the

left operand. There are some examples of assignment operators like =, +=, -=, *=, %=,

**=, //=. In the below table, we explain the works of the operators.

Operator Description

= It assigns the value of the right expression to the left operand.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

26 Periyar University – CDOE| Self-Learning Material

+= By multiplying the value of the right operand by the value of the left

operand, the left operand receives a changed value. For example, if a = 10,

b = 20 => a+ = b will be equal to a = a+ b and therefore, a = 30.

-= It decreases the value of the left operand by the value of the right operand

and assigns the modified value back to left operand. For example, if a = 20,

b = 10 => a- = b will be equal to a = a- b and therefore, a = 10.

*= It multiplies the value of the left operand by the value of the right operand

and assigns the modified value back to then the left operand. For example,

if a = 10, b = 20 => a* = b will be equal to a = a* b and therefore, a = 200.

%= It divides the value of the left operand by the value of the right operand and

assigns the reminder back to the left operand. For example, if a = 20, b =

10 => a % = b will be equal to a = a % b and therefore, a = 0.

= a=b will be equal to a=a**b, for example, if a = 4, b =2, a**=b will assign

4**2 = 16 to a.

//= A//=b will be equal to a = a// b, for example, if a = 4, b = 3, a//=b will assign

4//3 = 1 to a.

Example:

a = 32 # Initialize the value of a

b = 6 # Initialize the value of b

print('a=b:', a==b)

print('a+=b:', a+b)

print('a-=b:', a-b)

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

27 Periyar University – CDOE| Self-Learning Material

print('a*=b:', a*b)

print('a%=b:', a%b)

print('a**=b:', a**b)

print('a//=b:', a//b)

Output:

a=b: False

a+=b: 38

a-=b: 26

a*=b: 192

a%=b: 2

a**=b: 1073741824

a//=b: 5

Logical Operators

The assessment of expressions to make decisions typically uses logical

operators. The examples of logical operators are and, or, and not. In the case of logical

AND, if the first one is 0, it does not depend upon the second one. In the case of logical

OR, if the first one is 1, it does not depend on the second one. Python supports the

following logical operators. In the below table, we explain the works of the logical

operators.

Operator Description

and The condition will also be true if the expression is true. If the two
expressions a and b are the same, then a and b must both be true.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

28 Periyar University – CDOE| Self-Learning Material

or The condition will be true if one of the phrases is true. If a and b are the two
expressions, then an or b must be true if and is true and b is false.

not If an expression a is true, then not (a) will be false and vice versa.

Example:

a = 5 # initialize the value of a

print(Is this statement true?:',a > 3 and a < 5)

print('Any one statement is true?:',a > 3 or a < 5)

print('Each statement is true then return False and vice-

versa:',(not(a > 3 and a < 5)))

Output:

Is this statement true?: False

Any one statement is true?: True

Each statement is true then return False and vice-versa: True

Bitwise Operators

The two operands' values are processed bit by bit by the bitwise operators. The

examples of Bitwise operators are bitwise OR (|), bitwise AND (&), bitwise XOR (^),

negation (~), Left shift (<<), and Right shift (>>).

Example

if a = 7

 b = 6

then, binary (a) = 0111

 binary (b) = 0110

hence, a & b = 0011

 a | b = 0111

 a ^ b = 0100

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

29 Periyar University – CDOE| Self-Learning Material

 ~ a = 1000

Let, Binary of x = 0101

 Binary of y = 1000

Bitwise OR = 1101

8 4 2 1

1 1 0 1 = 8 + 4 + 1 = 13

Bitwise AND = 0000

0000 = 0

Bitwise XOR = 1101
8 4 2 1

1 1 0 1 = 8 + 4 + 1 = 13

Negation of x = ~x = (-x) - 1 = (-5) - 1 = -6

~x = -6

1.

Operator Description

& (binary
and)

A 1 is copied to the result if both bits in two operands at the same
location are 1. If not, 0 is copied.

| (binary or) The resulting bit will be 0 if both the bits are zero; otherwise, the
resulting bit will be 1.

^ (binary
xor)

If the two bits are different, the outcome bit will be 1, else it will be 0.

~ (negation) The operand's bits are calculated as their negations, so if one bit is 0,
the next bit will be 1, and vice versa.

<< (left shift) The number of bits in the right operand is multiplied by the leftward shift
of the value of the left operand.

>> (right
shift)

The left operand is moved right by the number of bits present in the right
operand.

Example:

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

30 Periyar University – CDOE| Self-Learning Material

a = 5 # initialize the value of a

b = 6 # initialize the value of b

print('a&b:', a&b)

print('a|b:', a|b)

print('a^b:', a^b)

print('~a:', ~a)

print('a<<b:', a<<b)

print('a>>b:', a>>b)

Output:

a&b: 4

a|b: 7

a^b: 3

~a: -6

a<>b: 0

Membership Operators

The membership of a value inside a Python data structure can be verified using

Python membership operators. The result is true if the value is in the data structure;

otherwise, it returns false.

Operator Description

in If the first operand cannot be found in the second operand, it is evaluated to be

true (list, tuple, or dictionary).

not in If the first operand is not present in the second operand, the evaluation is true

(list, tuple, or dictionary).

Example

x = ["Rose", "Lotus"]

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

31 Periyar University – CDOE| Self-Learning Material

print(' Is value Present?', "Rose" in x)

print(' Is value not Present?', "Riya" not in x)

Output:

Is value Present? True

Is value not Present? True

Identity Operators

These operators are used to check whether both operands are same or not.

Suppose, x stores a value 20 and y stores a value 40. Then x is y return false and x not

is y returns true.

Operator Description

is If the references on both sides point to the same object, it is determined
to be true.

is not If the references on both sides do not point at the same object, it is
determined to be true.

Example

a = ["Rose", "Lotus"]

b = ["Rose", "Lotus"]

c = a

print(a is c)

print(a is not c)

print(a is b)

print(a is not b)

print(a == b)

print(a != b)

Output:

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

32 Periyar University – CDOE| Self-Learning Material

True

False

False

True

True

False

Operator Precedence

The order in which the operators are examined is crucial to understand since it

tells us which operator needs to be considered first. Below is a list of the Python

operators' precedence tables.

Operator Description

** Overall other operators employed in the expression, the exponent

operator is given precedence.

~ + - the minus, unary plus, and negation.

* / % // the division of the floor, the modules, the division, and the

multiplication.

+ - Binary plus, and minus

>><< Left shift. and right shift

& Binary and.

^ | Binary xor, and or

<= <>>= Comparison operators (less than, less than equal to, greater than,

greater then equal to).

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

33 Periyar University – CDOE| Self-Learning Material

<> == != Equality operators.

= %= /= //= -=

+=

*= **=

Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

1.1.13 – Expressions

An expression is any legal combination of symbols (like variables, constants and

operators) that represents a value. In Python, an expression must have at least one

operand (variable or constant) and can have one or more operators. On evaluating an

expression, we get a value. Operand is the value on which operator is applied.

Generally Expressions are divided into the following types

1. Constant Expressions: One that involves only constants.

Example: 8 + 9 – 2

2. Integral Expressions: One that produces an integer result after evaluating the

expression.

Example: a = 10

3. Floating Point Expressions: One that produces floating point results.

Example: a * b / 2.0

4. Relational Expressions: One that returns either true or false value.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

34 Periyar University – CDOE| Self-Learning Material

Example: c = a>b

5. Logical Expressions: One that combines two or more relational expressions and

returns a value as True or False.

Example: a>b and y! = 0

6. Bitwise Expressions: One that manipulates data at bit level.

Example: x = y&z

7. Assignment Expressions: One that assigns a value to a variable.

Example: c = a + b or c = 10

Example

a = 20

b = 10

c = 15

d = 5

print ("a:%d b:%d c:%d d:%d" % (a,b,c,d))

e = (a + b) * c / d

print ("Value of (a + b) * c / d is ", e)

e = ((a + b) * c) / d

print ("Value of ((a + b) * c) / d is ", e)

e = (a + b) * (c / d)

print ("Value of (a + b) * (c / d) is ", e)

e = a + (b * c) / d

print ("Value of a + (b * c) / d is ", e)

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

35 Periyar University – CDOE| Self-Learning Material

Output:

a:20 b:10 c:15 d:5

Value of (a + b) * c / d is 90.0

Value of ((a + b) * c) / d is 90.0

Value of (a + b) * (c / d) is 90.0

Value of a + (b * c) / d is 50.0

1.1.14 – Type Conversions

There may be times when you want to specify a type on to a variable. This can

be done with casting. Python is an object-orientated language, and as such it uses

classes to define data types, including its primitive types.

Casting in python is therefore done using constructor functions:

 int() - constructs an integer number from an integer literal, a float literal (by

removing all decimals), or a string literal (providing the string represents a whole

number)

 float() - constructs a float number from an integer literal, a float literal or a string

literal (providing the string represents a float or an integer)

 str() - constructs a string from a wide variety of data types, including strings,

integer literals and float literals

Example - Integers:

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

Example - Floats:

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

36 Periyar University – CDOE| Self-Learning Material

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

Example - Strings:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'

Let’s Sum Up

In this section we have studied history of Python Programming Language along

with its features. Python is a general purpose high level programming language. Python

was developed by Guido Van Rossam in 1989, while working at National Research

Institute at Netherlands. The official Date of Birth for Python is Feb 20th 1991. In

Python, an identifier (name) must begin with a letter or underscore and can include any

number of letters, digits, or underscore. Writing the name of a variable is called

declaring a variable whereas assigning a value to a variable is called initialising a

variable. In python you can reassign variables as many times as you want to change the

value stored in them. The level of indentation groups statements to form a block of

statements. A variable of Boolean type can have only one of the two values – True or

False.

The input function prompts the user to provide some information on which the

program can work and give the result. The print statement is used to display the output

screen. Comments are non-executable statements in a program. They are just added to

describe the statements in the program code.

Check your progress - QUIZ

1. Which of the following is not a data type?

a. String b. Numeric c. Array d. Tuples

2. Which character is used for commenting in Python?

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

37 Periyar University – CDOE| Self-Learning Material

a. # b. ! c. @ d. *

3. Which is not a reserved keyword in Python?

a. Insert b. Pass c. Class d. Lambda

4. What is the output of >>> 4+?

a. 4+ b. 4 c. 5 d. Invalid syntax

5. Which of the following is the floor division operator?

 a. / b. % c. // d. \\

6. What will be the output of str[0:4] if str=”Hello”?

 a. ‘Hello’ b. ‘H’ c. ‘Hel’ d. ‘Hell’

7. Which of the following is used to find the first index of search string?

a. .find(“string”) b. .search(“string”) c. (“string”).find d. (“string”).search

8. Which of the following is used to access single character of string?

 a. [:] b. () c. [.] d. []

9. Which of the following will be printed? x =4.5 y =2 print x//y

 a. 2.0 b. 2.25 c. .25 d. 0.5

10. ________ an integer value that represents an element in a sequence

a. index b.item c.list d.id

SECTION 1.2: PYTHON ARRAY

An array is a data structure that stores values of same data type. To use arrays

in python language, you need to import the standard array module. This is because

array is not a fundamental data type like strings, integer etc. Here is how you can import

array module in python:

from array import *

1.2.1 -Defining and processing array

Array is a container which can hold a fix number of items and these items should be

of the same type. Most of the data structures make use of arrays to implement their

algorithms. Following are the important terms to understand the concept of Array.

 Element− Each item stored in an array is called an element.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

38 Periyar University – CDOE| Self-Learning Material

 Index − Each location of an element in an array has a numerical index, which is

used to identify the element.

 Index starts with 0.

 Array length is 10 which means it can store 10 elements.

 Each element can be accessed via its index. For example, we can fetch an

element at index 6 as 9.

Python's standard library has array module. The array class in it allows you to

construct an array of three basic types, integer, float and Unicode characters.

Syntax

import array

obj = array.array(typecode[, initializer])

 typecode − The typecode character used to create the array.

 initializer − array initialized from the optional value, which must be a list, a bytes-

like object, or iterable over elements of the appropriate type.

Return type

The array() constructor returns an object of array.array class

Type Code Description

B Represents signed integer of size 1 byte

B Represents unsigned integer of size 1 byte

C Represents character of size 1 byte

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

39 Periyar University – CDOE| Self-Learning Material

u Represents Unicode character size 2 bytes

h Represents signed integer of size 2 bytes

H Represents unsigned integer of size 2 bytes

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

w Represents unicode character of size 4 bytes

1 Represents signed integer of size 4 bytes

L Represents unsigned integer of size 4 bytes

f Represents floating point of size 4 bytes

D Represents floating point of size 8 bytes

Example

from array import *

array1 = array('i', [10,20,30,40,50])

for x in array1:

print(x)

OUTPUT:

10

20

30

40

50

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

40 Periyar University – CDOE| Self-Learning Material

1.2.2 - Array methods

The various methods that can be performed in an array are :

 Traverse − Print all the array elements one by one.

 Insertion − Adds an element at the given index.

 Deletion − Deletes an element at the given index.

 Search − Searches an element using the given index or by the value.

 Update − Updates an element at the given index.

Accessing Array Element

Example : element is inserted at index position 1

from array import*

array1 =array('i', [10,20,30,40,50])

print (array1[0])

print (array1[2])

Output
10

30

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on

the requirement, a new element can be added at the beginning, end, or any given index

of array. Here, we add a data element at the middle of the array using the python in-built

insert() method.

Example

from array import*

array1 =array('i', [10,20,30,40,50])

array1.insert(1,60)

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

41 Periyar University – CDOE| Self-Learning Material

for x in array1:

print(x)

Output

10

60

20

30

40

50

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing

all elements of an array. Here, we remove a data element at the middle of the array

using the python in-built remove() method.

Example

from array import*

array1 =array('i', [10,20,30,40,50])

array1.remove(40)

for x in array1:

print(x)

Output

10

20

30

50

Search Operation

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

42 Periyar University – CDOE| Self-Learning Material

 You can perform a search for an array element based on its value or its index.

Here, we search a data element using the python in-built index() method. When we

compile and execute the below program, it produces the following result which shows

the index of the element. If the value is not present in the array then the program returns

an error.

Example

from array import*

array1 =array('i',[10,20,30,40,50])

print(array1.index(40))

Output
3

Update Operation

Update operation refers to updating an existing element from the array at a given

index. Here, we simply reassign a new value to the desired index we want to update.

Example

from array import*

array1 =array('i', [10,20,30,40,50])

array1[2] =80

for x in array1:

 print(x)

Output

10

20

80

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

43 Periyar University – CDOE| Self-Learning Material

40

50

Let Us Sum Up

 In this section, the learners had the introduction to array concepts, how to create

an array and the different types of array because an array is a collection of elements of

same type. The way to insert an element into array and how to access the elements in

the array were discussed. The various methods that are available for array processing

were also mentioned like how to pop an array element.

Check your progress - QUIZ

11. from _____ import * statement used for creating a array

12. The type code used to create floating point number in a array is ____

13. The array index starts from ____

14. To search an element in an array use ______

15. To remove an element in an array ____ is used

UNIT SUMMARY

In this unit we have studied the history and various features of Python

Programming Language which made so popular to be used in current upcoming

applications by the developer. Python is recommended as first programming language

for beginners. Python is an example of Dynamically typed programming language. The

literal constants that we can be used directly in Programming Language which made so

popular to be used in current upcoming applications by the developer. In Python, the

Hash character (#) is used for commenting. Codes or texts that come after the hash

character are not considered as a part of the program. We briefly discuss how

Operators work using the program code for each operator in Python.

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

44 Periyar University – CDOE| Self-Learning Material

GLOSSARY

 COMMENT: The part of the program not executed by the interpreter. It is used by

other persons to understand the program thoroughly.

 DICTIONARY: A mapping of keys to their corresponding values.

 FLOATING POINT: A type of numeral that has a fractional part.

 INDEX: An integer value that represents an element in a sequence.

 INTEGER: A type of numeral that represents whole numbers including negative

numbers.

 ITEM: An element or a value in a series.

 ITERATION: The repetition of a set of statements or a piece of code.

 KEYWORD: A word that is reserved in a programming language for a specific

purpose. We cannot use keywords such as if and else as variable names.

 OPERAND: The value on which an operator operates

SELF – ASSESSMENT QUESTIONS

1. List out the features of Python Programming

2. Briefly describe the datatypes in python.

3. Describe the different types of operators in Python

EXERCISES

1. What is the output of print list[2] when list = [‘abcd’, 2.23, ‘john’]?

2. How will you convert a string to an integer in Python?

3. What are the uses of //, **, *= operators in Python?

4. Identify the datatype is best suitable to represent the following data values

a)Number of days in the year

b)The circumference of a rectangle

c)Yours father salary

d)Distance between moon and earth

e)Name of your best friend

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

45 Periyar University – CDOE| Self-Learning Material

5. Write a Program to find the square root of a number.

6. Write a program that demonstrates the use of relational operators.

7. How a string can be converted to a number?

8. Write a program to swap the values of two variables.

9. Create a floating point array and find the sum of its numbers.

10. Create an array of string and try to do the following:

a. Search an element

b. Insert

c. Delete an element

d. update

QUIZ - ANSWERS

1. c.array

2. a. #

3. a.insert

4. d.invalid syntax

5. c.//

6. a.’Hello’

7. a.find(“string”)

8. d.[]

9. a.2.0

10. a.index

11. array

12. f

13. 0

14. index()

15. remove()

SUGGESTED READINGS

1. Yashavant Kanetkar and Aditya Kanetkar, “Let us Python Solutions”, -bpb

publications, 6th Edition, 2023

https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1

CDOE - ODL B.Sc Computer Science – SEMESTER I UNIT - 1

46 Periyar University – CDOE| Self-Learning Material

2. Ralph T.Burwell,” Fundamentals of Python: Basics of Python coding and step-by-

step instructions for complete novices” Kindle Edition

3. David Amos, Dan Bader, Joanna Jablonski · “,PythonBasics:A Practical

Introduction to Python 3”, Real Python (Realpython.Com) Fourth Edition, 2021

OPEN SOURCE E-CONTENT LINKS

 https://www.python.org/about/gettingstarted/

 https://www.tutorialspoint.com/python/python_literals.htm

 https://www.w3schools.com/python/

 https://docs.python.org/3/tutorial/index.html

 https://en.wikipedia.org/wiki/Python_(programming_language)

REFERENCES

1. Reema Thareja,””Python Pogramming using Problem Solving approach”, Oxford

Higher Education,

2. Kenneth A. Lambert, “Fundamentals of Python- First Programs”, CENGAGE

Publication.

3. VamsiKurama, “Python Programming: A Modern Approach”, Pearson Education.

4. Mark Lutz, “Learning Python”, Orielly.

5. E Balagurusamy , “Problem Solving and Python Programming”, McGraw Hill

Education (India) Private Limited,

https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22David+Amos%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAU
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Dan+Bader%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAY
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Joanna+Jablonski%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAc
https://www.python.org/about/gettingstarted/
https://www.tutorialspoint.com/python/python_literals.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/index.html
https://en.wikipedia.org/wiki/Python_(programming_language)

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

47 Periyar University – CDOE| Self-Learning Material

PYTHON PROGRAMMING
UNIT 2- PYTHON PROGRAMMING

Control Statements: Selection/Conditional Branching statements: if,

if-else, nested if and if-elif-else statements. Iterative Statements:

while loop, for loop, else suite in loop and nested loops. Jump

Statements: break, continue and pass statements.

Control and Iterative Statements

Section Topic
Page

No.

UNIT - II

Unit Objectives

Section 2.1 Control Statements 48

2.1.1 Selection/Conditional Branching statements 49

2.1.1.1 If-statements 49

2.1.1.2 If-else statements 50

2.1.1.3 Nested if 51

2.1.1.4 if-elif-else statements 53

2.1.2 Iterative Statements 54

2.1.2.1 while loop 54

2.1.2.2 for loop 56

2.1.2.3 else suite in loop and nested loops 58

 Let Us Sum Up

 Check Your Progress

Section 2.2 Jump Statements 60

2.2.1 Break statement 60

2.2.2 Continue statement 60

2.2.3 Pass statement 61

 Let Us Sum Up

 Check Your Progress

2.3 Unit- Summary 63

2.4 Glossary 63

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

48 Periyar University – CDOE| Self-Learning Material

2.5 Self- Assessment Questions 63

2.6 Exercises 64

2.7 QUIZ - Answers 64

2.8 Suggested Readings 64

2.9 Open Source E-content Links 65

2.10 References 65

UNIT OBJECTIVES

In this unit, the learners will have elaborative idea about the declaration of

Control Statements, Loop statements and Jump statements. The different types of

selection or conditional branching statements like if, if-else, nested if, if-elif-else will

be discussed with simple example. The two types of iterative statements like for and

while will be discussed with else suite in loop / nested loop which is a new concept in

python language. The unit ends its discussion with the use and scope of jump

statements like break, continue and pass.

SECTION 2.1: CONTROL STATEMENTS

Python supports a set of control flow statements that you can integrate into

your program. The statements inside your Python program are generally executed

sequentially from top to bottom in the order that they appear. Apart from sequential

control flow statements, you can employ decision making and looping control flow

statements to break up the flow of execution thus enabling your program to

conditionally execute particular block of code. The term control flow details the

direction the program takes.

The control flow statements in Python Programming Language are:

1. Sequential Control Flow Statements :This refers to the line by line

execution, in which the statements are executed sequentially, in the same

order in which they appear in the program.

2. Decision Control Flow Statements :Depending on whether a condition is

True or False, the decision structure may skip the execution of an entire block

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

49 Periyar University – CDOE| Self-Learning Material

of statements or even execute one block of statements instead of other (if,

if…else and if…elif…else).

3. Loop Control Flow Statements : This is a control structure that allows the

execution of a block of statements multiple times until a loop termination

condition is met (for loop and while loop). Loop Control Flow statements are

also called Repetition statements of Iteration Statements.

2.1.1– Selection/Conditional Branching statements

The decision control statements usualy jumps, from one part of the code to

another depending on whether a particular condition is satisfied or not. That is, they

allow you to execute statements selectively based on certain decisions. Such type of

decision control statements are known as selection control statements or conditional

branching statements. Python language supports different types of conditional

branching statements which are as follows:

1. If statement

2. If-else statement

3. Nested if statement

4. If-elif-else statement

2.1.1.1 – if statements

 The if statement is used to test a particular condition and if the condition is

true, it executes a block of code known as if-block. The condition of if statement can

be any valid logical expression which can be either evaluated to true or false.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

50 Periyar University – CDOE| Self-Learning Material

Fig. if statement construct

Example

num = int(input("enter the number:"))

if num%2 == 0:

 print("The Given number is an even number")

Output:

enter the number: 10

The Given number is an even number

Example : Program to print the largest of the three numbers.

a = int (input("Enter a: "));

b = int (input("Enter b: "));

c = int (input("Enter c: "));

if a>b and a>c:

 print ("From the above three numbers given a is largest");

if b>a and b>c:

 print ("From the above three numbers given b is largest");

if c>a and c>b:

 print ("From the above three numbers given c is largest");

Output:

Enter a: 100

Enter b: 120

Enter c: 130

From the above three numbers given c is largest

2.1.1.2 – if - else statements

The if-else statement provides an else block combined with the if statement

which is executed in the false case of the condition.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

51 Periyar University – CDOE| Self-Learning Material

Fig. if-else statement construct

Example : Program to check whether a person is eligible to vote or not.

age = int (input("Enter your age: "))

 if age>=18:

 print("You are eligible to vote !!");

else:

 print("Sorry! you have to wait !!");

Output:

Enter your age: 90

You are eligible to vote !!

Example : Program to check whether a number is even or not.

num = int(input("enter the number:"))

if num%2 == 0:

 print("The Given number is an even number")

else:

 print("The Given Number is an odd number")

Output:

enter the number: 10

The Given number is even number

2.1.1.3 – nested – if statements

Python supports nested if statements which means we can use a

conditional if of else...if statement inside an existing if statement. There may be a

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

52 Periyar University – CDOE| Self-Learning Material

situation when you want to check for another condition after a condition resolves to

true. In such a situation, you can use the nested if construct. In a nested if construct,

you can have an if...elif...else construct inside another if...elif...else construct.

if expression1:

statement(s)

if expression2:

statement(s)

else:

if expression3:

 statement(s)3

else

 statement(s)

Example

num=8

print ("num = ",num)

if num%2==0:

if num%3==0:

print ("Divisible by 3 and 2")

else:

print ("divisible by 2 not divisible by 3")

else:

if num%3==0:

print ("divisible by 3 not divisible by 2")

else:

print ("not Divisible by 2 not divisible by 3")

Output

num = 8

divisible by 2 not divisible by 3

num = 15

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

53 Periyar University – CDOE| Self-Learning Material

divisible by 3 not divisible by 2

num = 12

Divisible by 3 and 2

num = 5

not Divisible by 2 not divisible by 3

2.1.1.4 – if-elif-else statements

The elif statement enables us to check multiple conditions and execute the

specific block of statements depending upon the true condition among them. We can

have any number of elif statements in our program depending upon our need.

However, using elif is optional.

The elif statement works like an if-else-if ladder statement in C. It must be

succeeded by an if statement.The syntax of the elif statement is given below.

Fig. if-elif-else statement construct

Example 1

number = int(input("Enter the number?"))

if number==10:

 print("The given number is equals to 10")

elif number==50:

 print("The given number is equal to 50");

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

54 Periyar University – CDOE| Self-Learning Material

elif number==100:

 print("The given number is equal to 100");

else:

 print("The given number is not equal to 10, 50 or 100");

Output:

Enter the number?15

The given number is not equal to 10, 50 or 100

Example

marks = int(input("Enter the marks? "))

if marks > 85 and marks <= 100:

print("Congrats ! you scored grade A ...")

elif marks > 60 and marks <= 85:

 print("You scored grade B + ...")

elif marks > 40 and marks <= 60:

print("You scored grade B ...")

elif (marks > 30 and marks <= 40):

print("You scored grade C ...")

else:

print("Sorry you are fail ?")

Output:

Enter the marks? 89

Congrats !you scored grade A

2.1.2 – Iterative statements

Python supports basic loop strcures through iterative statements. Iterative

statements are decision control statements that are used to repeat the execution of

a list of statements. Python language supports two types of iterative statements-

while loop and for loop.

2.1.2.1 while loop

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

55 Periyar University – CDOE| Self-Learning Material

A while loop statement in Python programming language repeatedly executes

a target statement as long as a given boolean expression is true.

Syntax

while expression:

statement(s)

Here, statement(s) may be a single statement or a block of statements with

uniform indent. The condition may be any expression, and true is any non-zero

value. The loop iterates while the boolean expression is true.

As soon as the expression becomes false, the program control passes to the line

immediately following the loop. The following flow diagram illustrates the while loop

Fig The while loop construct

Example

number = 1

while number <= 3:

print(number)

number = number + 1

Output

1

2

3

Example

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

56 Periyar University – CDOE| Self-Learning Material

Calculate the sum of numbers until user enters 0

number = int(input('Enter a number: '))

total = 0

iterate until the user enters 0

while number != 0:

total += number

number = int(input('Enter a number: '))

print('The sum is', total)

Output

Enter a number: 3

Enter a number: 2

Enter a number: 1

Enter a number: -4

Enter a number: 0

The sum is 2

2.1.2.2 for loop

In Python, the for Statement runs the code block each time it traverses a

series of elements. The loop_control_var is the parameter that determines the

element's value within the iterable sequence on each iteration. When a sequence

contains expression statements, they are processed first. The first element in the

sequence is then assigned to the iterating variable iterating_variable. From that point

onward, the planned block is run. Each element in the sequence is assigned to

iterating_variable during the statement block until the sequence as a whole is

completed. Using indentation, the contents of the Loop are distinguished from the

remainder of the program.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

57 Periyar University – CDOE| Self-Learning Material

Fig The for loop construct

Example -find the sum of squares of each element of the list using for loop
 # creating the list of numbers

numbers = [3, 5, 23, 6, 5, 1, 2, 9, 8]

 # initializing a variable that will store the sum

sum = 0

using for loop to iterate over the list

for num in numbers:

sum = sum + num ** 2

 print("The sum of squares is: ", sum)

Output:

The sum of squares is: 774

Example

languages = ['Swift', 'Python', 'Go']

access elements of the list one by one

for i in languages:

print(i)

Output:

Swift

Python

Go

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

58 Periyar University – CDOE| Self-Learning Material

Example

language = 'Python'

for x in language: # iterate over each character in language

print(x)

Output
P

y

t

h

o

n

2.1.2.3 else suite in loop and nested loops

Python supports having an else statement associated with a while loop

statement. If the else statement is used with a while loop, the else statement is

executed when the condition becomes false before the control shifts to the main line

of execution.

Example –

for letter in “HELLO”:

 print(letter, end=” “)

else:

 print(“\nDone”)

Output:

H E L L O

Done

i=1

while(i<0):

 print(i)

 i = i-1

else:

 print(i,” is not negative so loop did not

execute”)

Output

 1 is not negative so loop did not execute

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

59 Periyar University – CDOE| Self-Learning Material

Let’s Sum Up

In this section, learners studied about the control statements in Python

Programming. The control statements include conditional and iterative statements.

There are four conditional statements like if, if-else, nested if and if-elif-else

statements. All the four statements are explained with simple example and their

expected output which helps the learner to understand the concept easily. Under

iterative statements while loop and for loop concepts are discussed.

Check your progress – QUIZ 1

1. ______ is a control structure that allows the execution of a block of

statements multiple times until a condition is met.

a. Sequential Control Flow Statements

b. Decision Control Flow Statements

c. Loop Control Flow Statements

d. Jump Control Flow Statements

2. An if statement can also be followed by an _____statement which is optional.

a. Else b. then c. else d.Then

3. __________ is a short form of “else if statement.

a.elif b.Elif c.Elseif d.ifelse

4. _________ can be used when the number of times the statements in loop has

to be executed is not know in advance

a. For b.for c.while d.While

5. for i in range(0,20):

print(____)

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

60 Periyar University – CDOE| Self-Learning Material

 fill the blank to print only odd values in the range

SECTION 2.2: JUMP STATEMENTS

2.2.1 – break statement

The break is a keyword in python which is used to bring the program control

out of the loop. The break statement breaks the loops one by one, i.e., in the case of

nested loops, it breaks the inner loop first and then proceeds to outer loops. In other

words, we can say that break is used to abort the current execution of the program

and the control goes to the next line after the loop. The break is commonly used in

the cases where we need to break the loop for a given condition.

Example

my_list = [1, 2, 3, 4]

count = 1

for item in my_list:

if item == 4:

print("Item matched")

count += 1

break

print("Found at location", count)

Output:

Item matched

Found at location 2

2.2.2 – continue statement

Python continue keyword is used to skip the remaining statements of the

current loop and go to the next iteration. In Python, loops repeat processes on their

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

61 Periyar University – CDOE| Self-Learning Material

own in an efficient way. However, there might be occasions when we wish to leave

the current loop entirely, skip iteration, or dismiss the condition controlling the loop.

We use Loop control statements in such cases. The continue keyword is a

loop control statement that allows us to change the loop's control.

Example

for iterator in range(10, 21):

 # If iterator is equals to 15, loop will continue to the next iteration

if iterator == 15:

continue

 # otherwise printing the value of iterator

print(iterator)

Output:

10

11

12

13

14

16

17

18

19

20

2.2.3 – pass statement

The pass statement serves as a placeholder for future code, preventing errors

from empty code blocks.It's typically used where code is planned but has yet to be

written.

Example

def future_function():

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

62 Periyar University – CDOE| Self-Learning Material

pass

this will execute without any action or error

future_function()

Let’s Sum Up

In this section, learners studied about the control statements which includes

conditional and iterative statements. The conditional statements includes if, if-else,

nested if and if-elif-else statements. All the four statements are explained with simple

example along with their expected output. The while..loop and for..loop comes under

iterative statements concepts. In second part of the unit, the Jump statements like

pass, continue and break in Programming Language were discussed. The jump

statements are used to alter the program flow. Using break or continue outside a

loop causes an error. Pass statement is used when a statement is required

syntactically but no command or code has to be executed.When the compiler

encounters a break statement then the rest of the statements in the loop are skipped

and the control is unconditionally transferred to the outside the loop.

Check your progress QUIZ-2

6. To specify an empty body of a for loop, you will use ____ statement.

a. Break b.break c.continue d.pass

7. Whenever the _______statement is encountered, the execution control

immediately jumps to the first instruction following the loop.

a.Break b.break c.continue d.pass

8. To pass control to the next iteration without exiting the loop, use the

_____statement.

a.Break b.break c.continue d.pass

9. Which statement is used to terminate the execution of the nearest enclosing

loop in which it appears?

a.Break b.break c.continue d.pass

10. Which statement indicates a NOP?

a.Break b.break c.continue d.pass

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

63 Periyar University – CDOE| Self-Learning Material

UNIT SUMMARY

In this section, the learners learned the Jump statements like pass, continue

and break in Programming Language. The jump statements are used to alter the

program flow. Using break or continue outside a loop causes an error. When the

compiler encounters a continue statement then the rest of the statements in the loop

are skipped and the control is unconditionally transferred to the loop-continuation

portion of the nearest enclosing loop. Pass statement is used when a statement is

required syntactically but no command or code has to be executed.

GLOSSARY

Conditional branching statements Statements that helps to jump from one part of

the program to another depending on whether a particular conditions is satisfied or

not.

If-else-if statement Decision control statement that works in the same way as a

normal if statement. It also known as nested if construct.

If-else statement Decision control statement in which first the test expression is

evaluated. If the expression is True, if block is executed and else block is skipped.

Otherwise, if the expression is false, else block is executed and if the block is

ignored.

If-statement Simplest form of decision control statement that is frequently used in

decision making.

SELF – ASSESSMENT QUESTIONS

1. Write a program to find whether a number is even or odd

2. Write a program to check the largest among the given three numbers

3. Write a Python program to check if the input year is a leap year or not

4. Write a program to print the prime numbers for given range

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

64 Periyar University – CDOE| Self-Learning Material

5. Write a program to demonstrate while loop with else.

EXERCISES

1. Write a short note on conditional branching statements supported by Python.

2. Explain the syntax of for loop.

3. Explain the utility of break statement with the help an example.

4. Explain the utility of continue statement with the help an example.

5. Differentiate between pass and continue statement.

QUIZ - ANSWERS

QUIZ - 1 & 2

1. c.Loop Control Flow Statements

2. c.else

3. a.elif

4. c.while

5. 2*i+1

6. d.pass

7. b.break

8. c.continue

9. b.break

10. d.pass

SUGGESTED READINGS

1. Yashavant Kanetkar and Aditya Kanetkar, “Let us Python Solutions”, -bpb

publications, 6th Edition, 2023

https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

65 Periyar University – CDOE| Self-Learning Material

2. Ralph T.Burwell,” Fundamentals of Python: Basics of Python coding and step-by-

step instructions for complete novices” Kindle Edition

3. David Amos, Dan Bader, Joanna Jablonski · “,PythonBasics:A Practical

Introduction to Python 3”, Real Python (Realpython.Com) Fourth Edition, 2021

OPEN SOURCE E-CONTENT LINKS

 https://www.python.org/about/gettingstarted/

 https://www.w3schools.com/python/

 https://docs.python.org/3/tutorial/index.html

 https://www.geeksforgeeks.org/python-programming-language/

REFERENCES

1. Reema Thareja,””Python Programming using Problem Solving approach”,

Oxford Higher Education.

2. Dr. R. NageswaraRao, “Core Python Programming”, First Edition, 2017,

Dream tech Publishers.

3. VamsiKurama, “Python Programming: A Modern Approach”, Pearson

Education.

4. Mark Lutz, “Learning Python”, Orielly.

5. E Balagurusamy , “Problem Solving and Python Programming”, McGraw Hill

Education (India) Private Limited.

https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22David+Amos%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAU
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Dan+Bader%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAY
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Joanna+Jablonski%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAc
https://www.python.org/about/gettingstarted/
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/index.html
https://www.geeksforgeeks.org/python-programming-language/

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

66 Periyar University – CDOE| Self-Learning Material

PYTHON PROGRAMMING
UNIT 3- PYTHON PROGRAMMING

Functions: Function Definition – Function Call – Variable Scope and

its Lifetime-Return Statement. Function Arguments: Required

Arguments, Keyword Arguments, Default Arguments and Variable

Length Arguments- Recursion. Python Strings: String operations-

Immutable Strings - Built-in String Methods and Functions - String

Comparison. Modules: import statement- The Python module – dir()

function – Modules and Namespace – Defining our own modules

Functions, String, and Modules

Section Topic
Page

No.

UNIT - III

Unit Objectives

Section 3.1 Functions 67

3.1.1 Function Definition 69

3.1.2 Function Call 69

3.1.3 Variable Scope and its Lifetime 70

3.1.4 Return Statement 71

3.1.5 Function Arguments 72

3.1.5.1 Required Arguments 73

3.1.5.2 Keyword Arguments 74

3.1.5.3 Default Arguments 75

3.1.5.4 Variable Length Arguments 76

3.1.6 Recursion 77

 Let Us Sum Up

 Check Your Progress

Section 3.2 Python Strings 78

3.2.1 String operations 79

3.2.2 Immutable Strings 80

3.2.3 Built-in String Methods and Functions 81

3.2.4 String Comparison 84

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

67 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVES

In this unit, the learners will understand the meaning and scope of functions,

Strings and modules in python programming. It will discuss the way to define a

function / call a function. The various types of arguments supported by function

concept will be discussed. The variable scope and life time which is very important to

keep track is discussed. It also describes the role of return statement in a function. In

Python String place a major role. The way its declared, accessed, formatted, indexed

are also discussed. Finally the role of Module in python will be briefed.

SECTION 3.1: FUNCTIONS

A function is a block of organized and reusable program code that performs a

single, specific, and well-defined task. Python enables its programmers to break up

a program into functions, each of which can be written more or less independently of

the others. Therefore, the code of one function is completely insulated from the

codes of the other functions.

 Let Us Sum Up

 Check Your Progress

3.3 Modules 85

3.3.1 import statement 86

3.3.2 The Python module 86

3.3.3 dir()function 87

3.3.4 Modules and namespace 87

3.3.5 Defining your own module 88

 Let Us Sum Up

 Check Your Progress

3.4 Unit- Summary 90

3.5 Glossary 90

3.6 Self- Assessment Questions 91

3.7 Exercises 91

3.8 Answers 92

3.9 Suggested Readings 92

3.10 Open Source E-Content Links 92

3.11 References 93

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

68 Periyar University – CDOE| Self-Learning Material

 Figure 1: Calling a function

In figure 1 which explains how a function func1() is called to perform a

well�defined task. As soon as func1() is called, the program control is passed to the

first statement in the function. All the statements in the function are executed and

then the program control is passed to the statement following the one that called the

function.

Figure 2: Function calling another function

In figure 2 func1() calls function named func2(). Therefore, func1() is known

as the calling function and func2() is known as the called function. The moment the

compiler encounters a function call, instead of executing the next statement in the

calling function, the control jumps to the statements that are a part of the called

function. After called function is executed, the control is returned back to the calling

program. It is not necessary that the func1() can call only one function, it can call as

many functions as it wants and as many times as it wants. For example, a function

call placed within for loop or while loop may call the same function multiple times

until the condition holds true.

Hence, it becomes important to organize the program into more manageable

units. Further, it makes the code reusable. There are three types of functions in

python-

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

69 Periyar University – CDOE| Self-Learning Material

1. Built-in functions – these are the functions which are already defined in the

language. Example print(), max(), input(), etc.

2. User Defined functions- these are the functions that can be created or

defined by the users according to their needs.

3. Anonymous functions

3.1.1– Function Definition

A function can be defined using def statement and giving suitable name to a

function by following the rules of identifiers. The process of defining a function is

called function definition.

Syntax

def function_name(list_of_parameters) :

statement (s)

 function_name() - is the name of the function. A function name must be

followed by a set of parenthesis. Any name can be given to a function following the

rules of identifiers.

 List_of _parameters –is an optional field which is used to pass values or

inputs to a function. It can be none or a comma separated list of variables.

 Statements(s) – is a set of statements or commands within the function.

Each time the function is called, all the statements will be executed. These

statements together form the body of a function.

3.1.2 Function Call

Even if the function is defined, it can never be executed till the time it is called.

Hence, for using a function, it must be called using function call statement. A function

can be called by its name with set of parenthesis and optional list of arguments.

Syntax

 function_name(list_of_arguments)

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

70 Periyar University – CDOE| Self-Learning Material

Example

def first_function(): #function definition

 print(“HELLO WORLD …!”)

first_function() #function calling

OUTPUT:

HELLO WORLD …!

Function needs to be defined only once, but it can be called any number of

times by using calling statements. They can not only be called in the same program,

but they can also be called in different programs. Another example shown below is

the program having a function to calculate factorial of a number.

Example

def factorial():

 fact=1

 n=int(input(“enter a number :”)

 for i in range(1, n+1):

fact= fact + i

 print(“factorial of “, n “,is “,fact)

factorial()

Output:

Enter a number: 4

Factorial of 4 is 24

3.1.3–Variable Scope and its lifetime

Part of a code in which a variable can be accessed is called Scope of a

variable. Scope of a variable can be global or local.

 Local variables are the variable created within a function’s body or function’s

scope. They cannot be accessed outside the function. Their scope is only

limited to the function in which they are created.

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

71 Periyar University – CDOE| Self-Learning Material

 Global variables are the variable created outside any function. Their scope is

global, hence can be used anywhere. Global variables can also be created

within function using keyword global.

Example: Use of local and global variables.

Comparison between global and local variables

Global variables Local variables

They are defined in the main

body of the program file.

They are defined within a function and is local to

that function.

They can be accessed

throughout the program life.

They can be accessed from the point of its

definition until the end of the block in which it is

defined.

Global variables are accessible

to all functions in the program.

They are not related in any way to other

variables with the same names used outside the

function

3.1.4 Return Statement

A function may or may not have a return[expression] statement. That is, the

return statement is optional. You can assign the function name to a variable After

writing the code statements, the block is ended with a return statement whose syntax

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

72 Periyar University – CDOE| Self-Learning Material

is return [expression].If you want to return more than one value, separate the values

using commas. The default return value is NONE.

Syntax

return [expression]

The expression is written in brackets because it is optional. If the expression

is present, it is evaluated and the resultant value is returned to the calling function.

However, if no expression is specified then the function will return none. The return

statement is used for two things.

 Return a value to the caller

 To end and exit a function and go back to its caller

Example

def factorial(N):

 fact=1

 for i in range(1, n+1):

 fact= fact + i

return(fact)

n=int(input(“enter a number :”)

fact=factorial(n)

print(“factorial of “, n “,is “,fact)

OUTPUT

 Enter a number :4

 Factorial of 4 is 24

3.1.5 Function Arguments

Parameters and arguments are the values or expressions passed to the

functions between parentheses. As we have seen in earlier sections, many of the

built in functions need arguments to be passed with them: the math.cos() function

takes a number, i.e., the value of the angle as an argument. Many functions require

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

73 Periyar University – CDOE| Self-Learning Material

two or more arguments to be passed such as the power function in math module

math.pow(), where we have to pass two arguments, the base and the exponent.

 The value of the argument is always assigned to a variable known as

parameter. At the time of function definition, we have to define some parameters if

that function requires some arguments to be passed at the time of calling.

There can be four types of formal arguments using which a function can be

called which are as follows:

1. Required arguments

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

3.1.5.1 Required Arguments

Required arguments are those supplied to a function during its call in a

predetermined positional sequence. The number of arguments required in the

method call must be the same as those provided in the function's definition.

We should send two contentions to the capability() all put together; it will

return a language structure blunder, as seen beneath.

Example

Defining a function

def function(n1, n2):

 print(“number 1 is: ”, n1)

 print(“number 2 is: ”, n2)

Calling function and passing two arguments out of order

#we need num1 to be 20 and num2 to be 30

print(”Passing out of order arguments”)

function(30, 20)

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

74 Periyar University – CDOE| Self-Learning Material

Calling function and passing only one argument

print(”Passing only one argument”)

try:

 function(30)

except:

 print(”Function needs two positional arguments”)

Output:

Passing out of order arguments

number 1 is: 30

number 2 is: 20

Passing only one argument

Function needs two positional arguments

3.1.5.2 Keyword Statement

Keyword arguments are linked to the arguments of a called function. While

summoning a capability with watchword contentions, the client might tell whose

boundary esteem it is by looking at the boundary name.

We can eliminate or orchestrate specific contentions in an alternate request

since the Python translator will interface the furnished watchwords to connect the

qualities with its boundaries. One more method for utilizing watchwords to summon

the capability() strategy is as per the following:

Example

 # Defining a function

def function(n1, n2):

 print(“number 1 is: ”, n1)

 print(“number 2 is: ”, n2)

Calling function and passing arguments without using keyword

print(”Without using keyword”)

function(50, 30)

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

75 Periyar University – CDOE| Self-Learning Material

Calling function and passing arguments using keyword

print(”With using keyword”)

function(n2 = 50, n1 = 30)

Output:

Without using keyword

number 1 is: 50

number 2 is: 30

With using keyword

number 1 is: 30

number 2 is: 50

3.1.5.3 Default Statement

A default contention is a boundary that takes as information default esteem,

assuming that no worth is provided for the contention when the capability is called.

The following example demonstrates default arguments.

Example

defining a function

def function(n1, n2 = 20):

print(“number 1 is: “, n1)

print(“number 2 is: “, n2)

Calling the function and passing only one argument

print(“Passing only one argument”)

function(30)

Now giving two arguments to the function

print(“Passing two arguments”)

function(50,30)

Output:

Passing only one argument

number 1 is: 30

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

76 Periyar University – CDOE| Self-Learning Material

number 2 is: 20

Passing two arguments

number 1 is: 50

number 2 is: 30

3.1.5.4 Variable length Arguments

We can involve unique characters in Python capabilities to pass many

contentions. However, we need a capability. This can be accomplished with one of

two types of characters:

“args” and “kwargs” refer to arguments not based on keywords.

Example

Defining a function

def function(*args_list):

 ans = []

 for l in args_list:

 ans.append(l.upper())

 return ans

Passing args arguments

object = function('Python', 'Functions', 'tutorial')

print(object)

defining a function

def function(**kargs_list):

 ans = []

 for key, value in kargs_list.items():

 ans.append([key, value])

 return ans

Paasing kwargs arguments

object = function(First = ”Python”, Second = ”Functions”, Third = ”Tutorial”)

print(object)

Output:

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

77 Periyar University – CDOE| Self-Learning Material

['PYTHON', 'FUNCTIONS', 'TUTORIAL']

[['First', 'Python'], ['Second', 'Functions'], ['Third', 'Tutorial']]

3.1.6 Recursion

Recursion is the process of defining something in terms of itself.If a function,

procedure or method calls itself, it is called recursive. In Python, we know that a

function can call another function, but it is also possible that a function calls itself. Let

us look at an example of a recursive function by computing the factorial of a number.

The factorial of any number is defined by multiplying all the integers from 1 to that

number. For example, the factorial of 5 is 1*2*3*4*5 = 120.

Example

def factorial(x):

 “““This is a recursive function to find the factorial of an integer”““

 if x == 1:

return 1

 else:

return (x * factorial(x-1))

num = 10

print(“The factorial of”, num, “is”, factorial(num))

OUTPUT:

The factorial of 10 is 3628800

Let’s Sum Up

In this section we have seen the role of a function definition in Python

Programming. Functions are self-contained programs that perform some particular

tasks. Once a function is created by the programmer for a specific task, this function

can be called anytime to perform that task. Suppose, we want to perform a task

several times, in such a scenario, rather than writing code for that particular task

repeatedly, we create a function for that task and call it when we want to perform the

task. Each function is given a name, using which we call it. A function may or may

not return a value. There are many built-in functions provided by Python such as

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

78 Periyar University – CDOE| Self-Learning Material

dir(), len(), abs(), etc. Users can also build their own functions, which are called user-

defined functions. If a function, procedure or method calls itself, it is called recursive

Check your progress - QUIZ

1. What are the advantages of using functions?

a. Reduce duplication of code b. Clarity of code

c. Reuse code d. All

2. Which keyword is used to define the block of statement in the function?

a. Function b. def c. func d. pi

3. Which file contains the predefined Python codes?

a. Function b. Pi c. module d. lambda

4. A function is called using the name with which it was defined earlier, followed

by: a. { } b. () c. <> d. []

5. What is the use of the return statement?

a. exit a function b. null value c. initiate a function d. none

SECTION 3.2: PYTHON STRING

In Python, a string is an immutable sequence of Unicode characters. Each

character has a unique numeric value as per the UNICODE standard. But, the

sequence as a whole, doesn't have any numeric value even if all the characters are

digits. To differentiate the string from numbers and other identifiers, the sequence of

characters is included within single, double or triple quotes in its literal

representation. Hence, 1234 is a number (integer) but '1234' is a string.

Example

#Using single quotes

str1 = 'Hello Python'

print(str1)

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

79 Periyar University – CDOE| Self-Learning Material

#Using double quotes

str2 = ”Hello Python”

print(str2)

#Using triple quotes

str3 = '''''Triple quotes are generally used for

 represent the multiline or

 docstring'''

print(str3)

Output:

Hello Python

Hello Python

Triple quotes are generally used for

represent the multiline or

docstring.

3.2.1 String Operations

Operator Description Example

+ Concatenation - Adds values on either side of the operator
a + b will give
HelloPython

*
Repetition - Creates new strings, concatenating multiple
copies of the same string

a*2 will give -
HelloHello

[] Slice - Gives the character from the given index a[1] will give e

[:] Range Slice - Gives the characters from the given range
a[1:4] will give

ell

in
Membership - Returns true if a character exists in the
given string

H in a will give 1

not in
Membership - Returns true if a character does not exist in
the given string

M not in a will
give 1

r/R

Raw String - Suppresses actual meaning of Escape
characters. The syntax for raw strings is exactly the same
as for normal strings with the exception of the raw string
operator, the letter “r,” which precedes the quotation
marks. The “r” can be lowercase (r) or uppercase (R) and
must be placed immediately preceding the first quote

print r'\n' prints
\n and print
R'\n'prints \n

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

80 Periyar University – CDOE| Self-Learning Material

mark.

3.2.2 Immutable Strings

Python strings are immutable which means that once created they cannot be

changed. Whenever you try to modify an existing string variable, a new string is

created.

 Every object in Python is stored in memory. You can find out whether two

variables are referring to the same object or not by using the id(). The id() returns the

memory address of that object. As both str1 and str2 points to same memory

location, they both point to the same object.

Example

str1=“hello”

print(“str1 is :”,str1)

print(“id of str1 is :”, id(str1))

str2=“world”

print(“str2 is :”,str2)

print(“id of str1 is :”, id(str2))

str1 +=str2

print(“str1 after concatenation is :”,str1)

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

81 Periyar University – CDOE| Self-Learning Material

print(“id of str1 is :”, id(str1))

str3=str1

print(“str3 is :”,str3)

print(“id of str3 is :”, id(str3))

OUTPUT:

str1 is : hello

id of str1 is : 45093344

str2 is : world

id of str2 is : 45093321

str1 after concatenation is : helloworld

id of str1 is : 43861792

str3 is : helloworld

id of str3 is : 43861792

3.2.3 Built-in String Methods and Functions

Python includes the following built-in methods to manipulate strings −

Methods with Description

capitalize() :- Capitalizes first letter of string.

casefold():-Converts all uppercase letters in string to lowercase. Similar to
lower(), but works on UNICODE characters alos.

center(width, fillchar) :- Returns a space-padded string with the original string
centered to a total of width columns.

count(str, beg= 0,end=len(string)) :-Counts how many times str occurs in string
or in a substring of string if starting index beg and ending index end are given.

decode(encoding='UTF-8',errors='strict') :-Decodes the string using the codec
registered for encoding. encoding defaults to the default string encoding.

encode(encoding='UTF-8',errors='strict') :- Returns encoded string version of
string; on error, default is to raise a ValueError unless errors is given with 'ignore'
or 'replace'.

endswith(suffix, beg=0, end=len(string)) :-Determines if string or a substring of
string (if starting index beg and ending index end are given) ends with suffix;
returns true if so and false otherwise.

https://www.tutorialspoint.com/python/string_capitalize.htm
https://www.tutorialspoint.com/python/casefold_method.htm
https://www.tutorialspoint.com/python/string_center.htm
https://www.tutorialspoint.com/python/string_count.htm
https://www.tutorialspoint.com/python/string_decode.htm
https://www.tutorialspoint.com/python/string_encode.htm
https://www.tutorialspoint.com/python/string_endswith.htm

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

82 Periyar University – CDOE| Self-Learning Material

expandtabs(tabsize=8) :-Expands tabs in string to multiple spaces; defaults to 8
spaces per tab if tabsize not provided.

find(str, beg=0 end=len(string)) :- Determine if str occurs in string or in a
substring of string if starting index beg and ending index end are given returns
index if found and -1 otherwise.

format(*args, **kwargs) :-This method is used to format the current string value.

format_map(mapping) :-This method is also use to format the current string the
only difference is it uses a mapping object.

index(str, beg=0, end=len(string)) :-Same as find(), but raises an exception if
str not found.

isalnum():- Returns true if string has at least 1 character and all characters are
alphanumeric and false otherwise.

isalpha():-eturns true if string has at least 1 character and all characters are
alphabetic and false otherwise.

isascii():-Returns True is all the characters in the string are from the ASCII
character set.

isdecimal():-Returns true if a unicode string contains only decimal characters
and false otherwise.

isdigit():-Returns true if string contains only digits and false otherwise.

isidentifier():-Checks whether the string is a valid Python identifier.

islower():-Returns true if string has at least 1 cased character and all cased
characters are in lowercase and false otherwise.

isnumeric():-Returns true if a unicode string contains only numeric characters
and false otherwise.

isprintable():-Checks whether all the characters in the string are printable.

isspace():-Returns true if string contains only whitespace characters and false
otherwise.

istitle():-Returns true if string is properly “titlecased” and false otherwise.

isupper():-Returns true if string has at least one cased character and all cased
characters are in uppercase and false otherwise.

join(seq) :-Merges (concatenates) the string representations of elements in
sequence seq into a string, with separator string.

https://www.tutorialspoint.com/python/string_expandtabs.htm
https://www.tutorialspoint.com/python/string_find.htm
https://www.tutorialspoint.com/python/python_string_format_method.htm
https://www.tutorialspoint.com/python/python_string_format_map_method.htm
https://www.tutorialspoint.com/python/string_index.htm
https://www.tutorialspoint.com/python/string_isalnum.htm
https://www.tutorialspoint.com/python/string_isalpha.htm
https://www.tutorialspoint.com/python/isascii_method.htm
https://www.tutorialspoint.com/python/string_isdecimal.htm
https://www.tutorialspoint.com/python/string_isdigit.htm
https://www.tutorialspoint.com/python/python_string_isidentifier_method.htm
https://www.tutorialspoint.com/python/string_islower.htm
https://www.tutorialspoint.com/python/string_isnumeric.htm
https://www.tutorialspoint.com/python/isprintable_method.htm
https://www.tutorialspoint.com/python/string_isspace.htm
https://www.tutorialspoint.com/python/string_istitle.htm
https://www.tutorialspoint.com/python/string_isupper.htm
https://www.tutorialspoint.com/python/string_join.htm

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

83 Periyar University – CDOE| Self-Learning Material

ljust(width[, fillchar]) :-Returns a space-padded string with the original string
left-justified to a total of width columns.

lower():-Converts all uppercase letters in string to lowercase.

lstrip():- Removes all leading white space in string.

maketrans():-Returns a translation table to be used in translate function.

partition():-Splits the string in three string tuple at the first occurrence of
separator.

removeprefix():-Returns a string after removing the prefix string.

removesuffix():-Returns a string after removing the suffix string.

replace(old, new [, max]) :-Replaces all occurrences of old in string with new or
at most max occurrences if max given.

rfind(str, beg=0,end=len(string)) :-Same as find(), but search backwards in
string.

rindex(str, beg=0, end=len(string)) :-Same as index(), but search backwards in
string.

rjust(width,[, fillchar]) :- Returns a space-padded string with the original string
right-justified to a total of width columns.

rpartition():-Splits the string in three string tuple at the ladt occurrence of
separator.

rsplit():-Splits the string from the end and returns a list of substrings.

rstrip():-Removes all trailing whitespace of string.

split(str=““, num=string.count(str)) :-Splits string according to delimiter str
(space if not provided) and returns list of substrings; split into at most num
substrings if given.

splitlines(num=string.count('\n')) :-Splits string at all (or num) NEWLINEs and
returns a list of each line with NEWLINEs removed.

startswith(str, beg=0,end=len(string)) :-Determines if string or a substring of
string (if starting index beg and ending index end are given) starts with substring
str; returns true if so and false otherwise.

strip([chars]) :-Performs both lstrip() and rstrip() on string.

swapcase():-Inverts case for all letters in string.

https://www.tutorialspoint.com/python/string_ljust.htm
https://www.tutorialspoint.com/python/string_lower.htm
https://www.tutorialspoint.com/python/string_lstrip.htm
https://www.tutorialspoint.com/python/string_maketrans.htm
https://www.tutorialspoint.com/python/partition_method.htm
https://www.tutorialspoint.com/python/removeprefix_method.htm
https://www.tutorialspoint.com/python/removesuffix_method.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_rfind.htm
https://www.tutorialspoint.com/python/string_rindex.htm
https://www.tutorialspoint.com/python/string_rjust.htm
https://www.tutorialspoint.com/python/rpartition_method.htm
https://www.tutorialspoint.com/python/rsplit_method.htm
https://www.tutorialspoint.com/python/string_rstrip.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_splitlines.htm
https://www.tutorialspoint.com/python/string_startswith.htm
https://www.tutorialspoint.com/python/string_strip.htm
https://www.tutorialspoint.com/python/string_swapcase.htm

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

84 Periyar University – CDOE| Self-Learning Material

title():-Returns “titlecased” version of string, that is, all words begin with
uppercase and the rest are lowercase.

translate(table, deletechars=““) :-Translates string according to translation
table str(256 chars), removing those in the del string.

upper():-Converts lowercase letters in string to uppercase.

zfill (width) :-Returns original string leftpadded with zeros to a total of width
characters; intended for numbers, zfill() retains any sign given (less one zero).

Following are the built-in functions we can use with strings −

Function with Description

len(list) :-Returns the length of the string.

max(list) :-Returns the max alphabetical character from the string str.

min(list) :-Returns the min alphabetical character from the string str.

3.2.4 String Comparison

We use the == operator to compare two strings. If two strings are equal, the

operator returns True. Otherwise, it returns False. For example,

Example

str1 = “Hello, world!”

str2 = “I love Swift.”

str3 = “Hello, world!”

compare str1 and str2

print(str1 == str2)

compare str1 and str3

print(str1 == str3)

Output

False

True

In the above example,

https://www.tutorialspoint.com/python/string_title.htm
https://www.tutorialspoint.com/python/string_translate.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_zfill.htm
https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_max.htm
https://www.tutorialspoint.com/python/string_min.htm

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

85 Periyar University – CDOE| Self-Learning Material

 str1 and str2 are not equal. Hence, the result is False.

 str1 and str3 are equal. Hence, the result is True.

Let’s Sum Up

Besides numbers, strings are another important data type. Single quotes or

double quotes are used to represent strings. A string in Python can be a series or a

sequence of alphabets, numerals and special characters. Similar to C, the first

character of a string has an index 0. There are many operations that can be

performed on a string. There are several operators such as slice operator ([]) and [:]),

concatenation operator (+), repetition operator (*), etc. Slicing is used to take out a

subset of the string, concatenation is used to combine two or more than two strings

and repetition is used to repeat the same string several times.

Check your progress - QUIZ

6. _______ is a group of characters.

a.string b.word c.sentence d.line

7. You cannot multiply a string with a floating point number. (True / False)

8. You can print a string without the print function. (True / False)

9. Single quotes and double quotes ina string cannot used within triple quotes.

(True / False)

10. Char is a valid data type in python.(True/ False)

SECTION 3.3: MODULES

We have seen that functions help us to reuse a particular piece of code.

Module goes a step ahead. It allows you to reuse one or more functions in your

programs, even in the programs in which those functions have not been defined.

Putting simply, module is a file with a.py extension that has definitions of all.

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

86 Periyar University – CDOE| Self-Learning Material

Functions and variables that you would like to use even in other programs.

The program in which you want to use functions or variables defined in the module

will simply import that particular module (or .py file). Modules are pre-written pieces

of code that are used to perform common tasks like generating random numbers,

performing mathematical operations, etc.

The basic way to use a module is to add import module_name as the first line

of your program and then writing module_name.var to access functions and values

with the name var in the module.

3.3.1– import statement

A module may contain definition for many variables and functions. When you

import a module, you can use any variable or function defined in that module. But if

you want to use only selected variables or functions, then you can use the

from...import statement.

For example, in the aforementioned program you are using only the path

variable in the sys module, so you could have better written from sys import path.

Example

from math import pi

print(“PI =”, pi)

OUTPUT:

PI =3.141592653589793

To import more than one item from a module, use a comma separated list. For

example, to import the value of pi and sqrt() from the math module you can write,

from math import pi,sqrt

3.3.2 – The Python Module

 We have seen that a Python module is a file that contains some definitions

and statements. When a Python file is executed directly, it is considered the

main module of a program.

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

87 Periyar University – CDOE| Self-Learning Material

 Main modules are given the special name __main__ and provide the basis for

a complete Python program.

 The main module may import any number of other modules which may in turn

import other modules. But the main module of a Python program cannot be

imported into other module

3.3.3– dir() function

dir() is a built-in function that lists the identifiers defined in a module. These

identifiers may include functions, classes and variables. If no name is specified, the

dir() will return the list of names defined in the current module.

Example

def print_var(x):

 print(x)

x=10

print_var(x)

print(dir())

OUTPUT:

10

[‘__builtins__’,’__doc__’,’__name__’,’__package__’,’print_var’,’x’]

3.3.4 modules and namespace

A namespace is a container that provides a named context for identifiers. Two

identifiers with the same name in the same scope will lead to a name clash. In

simple terms, Python does not allow programmers to have two different identifiers

with the same name. However, in some situations we need to have same name

identifiers. To cater to such situations, namespaces is the keyword. Namespaces

enable programs to avoid potential name clashes by associating each identifier with

the namespace from which it originates.

Example:

#module1

def repeat_m(x):

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

88 Periyar University – CDOE| Self-Learning Material

 return x*3;

#module2

def repeat_m(x):

 return x*3;

import module1

import module2

result=repeat_m(10) #ambiguous reference for identifier repeat_m

Advantages of Modules:

 Python modules provide all the benefits of modular software design. These

modules provide services and functionality that can be reused in other

programs.

 Even the standard library of Python contains a set of modules. It allows you to

logically organize the code so that it becomes easier to understand and use.

3.3.5 – Defining your own module

Every Python program is a module, that is, every file that you save as .py

extension is a module. Modules should be placed in the same directory as that of

the program in which it is imported. It can also be stored in one of the directories

listed in sys.path.

First write these lines in a file and save the file as mymodule.py

def display():

 print(“Hello”)

 print(“Name of called module is ….”, __name__)

str=”Welcome to the World of Python !!!”

Then open another file (main.py) and write the lines of code given below.

import mymodule

print(“My module str = ”, mymodule.str)

mymodule.display()

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

89 Periyar University – CDOE| Self-Learning Material

print(“Name of calling module is ….”, __name__)

OUTPUT:

My module str = Welcome to the World of Python !!!

Hello

Name of called module is …. mymodule

Name of calling module is ….main

When a Python file is executed directly, it is considered the main module of a

program. Main modules are given the special name __main__ and provide the basis

for a complete Python program. The main module may import any number of other

modules which may in turn import other modules. But the main module of a Python

program cannot be imported into other modules.

Let Us Sum Up

In this section we have studied the literal constants that we can be used

directly in Programming Language which made so popular to be used in current

upcoming applications by the developer. Python is recommended as first

programming language for beginners. Python is an Example of Dynamically typed

programming language.

Check your progress - QUIZ

11. Modules are files saved with ____ extension

a.mod b..py c..pyi d..mod

12. To import sqrt and cos function from the math module write ____

13. It is mandatory to place all import statements at the beginning of a module

(True / False)

14. If a particular module is imported more that once, the interpreter will load the

module only once. (True / False)

15. A function can be called anywhere within a program (True / False)

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

90 Periyar University – CDOE| Self-Learning Material

UNIT SUMMARY

In this section, the learners learned about the functions, which are self-

contained programs that perform some particular tasks. There are many built-in

functions provided by Python such as dir(), len(), abs(), etc., and users can also

make their own functions which are known as user-defined functions. The block of

the function starts with a keyword def after which we write our function name

followed by parentheses. A module is a file that contains some predefined Python

codes. A module can define functions, classes and variables. It is a collection of

related functions grouped together.

Parameters and arguments are the values or expressions that are passed to

the functions between the parentheses. In keyword arguments, the caller recognises

the arguments by the parameter’s names. This type of argument can also be skipped

or can also be out of order. In default arguments, we can assign a value to a

parameter at the time of function definition that will be considered the default value to

that parameter.

GLOSSARY

FUNCTION: Functions are self-contained programs that perform some particular

tasks.

FUNCTION OBJECT: A value created by the definition of a function. A variable

which is the name of the function refers to the function object.

HEADER: The very first line of the function definition.

BODY: The block of statements inside the function definition.

PARAMETER: The variables used to pass some values to a function, defined

between parentheses.

FUNCTION CALL: It is a statement which executes the function.

ARGUMENT: It is a value which is provided at the time of function calling. It is

specified within parentheses.

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

91 Periyar University – CDOE| Self-Learning Material

RETURN VALUE: The value returned by the function as output to the caller.

MODULE: A file that contains a collection of related functions and definitions.

IMPORT STATEMENT: It is used to import various modules in Python

STRING A group of characters

SELF – ASSESSMENT QUESTIONS

1. What are the benefits of using functions? Also differentiate between function

definition and function calling.

2. What is Scope of a variable? Explain local and global variables with example.

3. Define the return statement in a function. Give the syntax.

4. Discuss the built in methods and functions of string.

5. What are modules? How do you use them in your programs?

EXERCISES

1. Write a function to convert a decimal number to its binary, octal and

hexadecimal equivalents.

2. Write a function to find the sum of several natural numbers using recursion

3. Write a program to declare string do the following:

o Convert to lower case

o Convert to upper case

o Return the index of first ‘a’

o Replace each ‘a’ by ‘p’

o Count the number of ‘o’

o Find the length

4. Write a program to define function to find the largest of given two numbers.

Import that function in another program and pass values.

5. Write a program to demonstrate the use of dir().

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

92 Periyar University – CDOE| Self-Learning Material

QUIZ - ANSWERS

1. d.All

2. b.def

3. c.module

4. b.()

5. a.exit a function

6. string

7. True

8. True

9. False

10. False

11. b..py

12. from math import sqrt, cos

13. True

14. True

15. True

SUGGESTED READINGS

1. Yashavant Kanetkar and Aditya Kanetkar, “Let us Python Solutions”, bpb

publications, 6th Edition, 2023

2. Ralph T.Burwell,” Fundamentals of Python: Basics of Python coding and step-by-

step instructions for complete novices” Kindle Edition

3. David Amos, Dan Bader, Joanna Jablonski · “,Python Basics:A Practical

Introduction to Python 3”, Real Python (Realpython.Com) Fourth Edition, 2021

OPEN SOURCE E-CONTENT LINKS

 https://www.python.org/about/gettingstarted/

 https://www.tutorialspoint.com/python/python_literals.htm

 https://www.w3schools.com/python/

 https://docs.python.org/3/tutorial/index.html

 https://www.geeksforgeeks.org/python-programming-language/

https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22David+Amos%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAU
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Dan+Bader%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAY
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Joanna+Jablonski%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAc
https://www.python.org/about/gettingstarted/
https://www.tutorialspoint.com/python/python_literals.htm
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/index.html
https://www.geeksforgeeks.org/python-programming-language/

CDOE - ODL B.Sc CS- SEMESTER I PYTHON PROGRAMMING

93 Periyar University – CDOE| Self-Learning Material

REFERENCES

1. Reema Thareja,””Python Pogramming using Problem Solving approach”,

Oxford Higher Education,

2. Dr. R. NageswaraRao, “Core Python Programming”, First Edition, 2017,

Dream tech Publishers.

3. VamsiKurama, “Python Programming: A Modern Approach”, Pearson

Education.

4. Mark Lutz, “Learning Python”, Orielly.

5. E Balagurusamy , “Problem Solving and Python Programming”, McGraw Hill

Education (India) Private Limited,

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

94 Periyar University – CDOE| Self-Learning Material

PYTHON PROGRAMMING

UNIT 4- PYTHON PROGRAMMING

Lists: Creating a list -Access values in List-Updating values in Lists-

Nested lists - Basic list operations- List Methods. Tuples: Creating,

Accessing, Updating and Deleting Elements in a tuple – Nested

tuples– Difference between lists and tuples. Dictionaries: Creating,

Accessing, Updating and Deleting Elements in a Dictionary –

Dictionary Functions and Methods - Difference between Lists and

Dictionaries.

Functions, String, and Modules

Section Topic Page No.

UNIT - IV

Unit Objectives

Section 4.1 List 95

4.1.1 Creating a List 96

4.1.2 Access values in a List 96

4.1.3 Updating values in List 97

4.1.4 Nested List 98

4.1.5 Basic List Operations 98

4.1.6 List Methods 100

 Let Us Sum Up

 Check Your Progress

Section 4.2 Tuples 102

4.2.1 Creating 103

4.2.2 Accessing 104

4.2.3 Updating 105

4.2.4 Deleting elements in a Tuple 106

4.2.5 Nested Tuples 108

4.2.6 Difference between List and Tuple 109

 Let Us Sum Up

 Check Your Progress

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

95 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVES

In this unit, learner will explore the various data types supported by Python

which includes List, Tuple and Dictionary. How to create the above three? How to

access the values in it? How to update or delete an element in it? The unit also

discusses the different functions and methods that can be performed on List, Tuple

and Dictionary. Finally the differences between List and Tuple, List and Dictionary

are also discussed.

SECTION 4.1: LIST

A list is a sequence of items separated by commas and items enclosed in

square brackets []. These are similar to arrays available with other programming

languages but unlike arrays items in the list may be of different data types. Lists are

mutable, and hence, they can be altered even after their creation.

Lists in Python are ordered and have a definite sequence and the indexing of

a list is done with 0 being the first index. Each element in the list has its definite

4.3 Dictionaries 110

4.3.1 Creating 111

4.3.2 Accessing 111

4.3.3 Updating 112

4.3.4 Deleting elements in a Dictionary 113

4.3.5 Dictionary Functions and Methods 115

4.3.6 Difference between List and Dictionary 117

 Let Us Sum Up

 Check Your Progress

4.4 Unit- Summary 118

4.5 Glossary 118

4.6 Self- Assessment Questions 119

4.7 Exercises 120

4.8 Answers for Check your Progress 120

4.9 Suggested Readings 121

4.10 Open Source E-Content Links 121

4.11 References 121

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

96 Periyar University – CDOE| Self-Learning Material

place in the list, which allows duplicating of elements in the list, with each element

having its own distinct place and creditability. It is represented by list class.

4.1.1 – Creating a List

lst_var=[val1,val2..]

Example

>>>lst1[1,2,3,4,5]

>>>print(lst1)

[1,2,3,4,5]

>>>lst1=[‘a’,’b’,’c’,’d’]

>>>print(lst2)

[‘a’,’b’,’c’,’d’]

>>>lst3=[“Python”,

“Programming”]

>>>print(lst3)

[“Python”, “Programming”]

>>>lst4=[‘1’,’ball’,9,34.89]

>>>print(lst4)

[‘1’,’ball’,9,34.89]

4.1.2 – Access values in a List

List can also be sliced and concatenated. To access values in a lists, square

brackets are used to slice along with the index or indices to get value stored at that

index.

seq=List[start:stop:step]

Example

numlst=[1,2,3,4,5,6,7,8,9,10]

print(“numlist is :”,numlst)

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

97 Periyar University – CDOE| Self-Learning Material

print(“First element in numlist is :”,numlst[0])

print(“numlst[2:5] =”,numlst[2:5])

print(“numlst[::2] =”,numlst[::2])

print(“numlst[1::3] =”,numlst[1::3])

Output:

numlist is : [1,2,3,4,5,6,7,8,9,10]

First element in numlist is : 1

numlst[2:5] =[3,4,5]

numlst[::2] = [1,3,5,7,9]

numlst[1::3] =[2,5,8]

4.1.3 - Updating values in List

Once created, one or more elements of a list can be easily updated by giving

the slice on the left-hand side of the assignment operator. You can also append new

values in the list and remove existing values from the list using the append() method

and del statement respectively.

Example:

num_list= [1,2,3,4,5,6,7,8,9,10]

print(“list is:”,num_list)

num_list[5]=100

print(“List after updation is:”,num_list)

num_list.append(200)

print(“List after appending a value is: “,num_list)

del num_list[3]

print(“List after deleting a value is:”,num_list)

Output:

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

98 Periyar University – CDOE| Self-Learning Material

list is: [1,2,3,4,5,6,7,8,9,10]

List after updation is: [1,2,3,4,5,100,7,8,9,10]

List after appending a value is: [1,2,3,4,5,100,7,8,9,10,200]

List after deleting a value is: [1,2,3,5,100,7,8,9,10,200]

4.1.4 - Nested List

Nested list means a list within another list.

Example

lst=[1.’a’,”abc”,[10,20,30],5.9]

I=0

while i<(len(lst)):

 print(“List [“,I,”] = “, lst[i])

 i+=1

print(“Second element of nested list = “,lst[3][1])

OUTPUT:

List[0]=1

List[1]=a

List[2]=abc

List[3]=[10,20,30]

List[4]=5.9

Second element of nested list = 20

4.1.5 - Basic List operations

Operation Description Example Output

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

99 Periyar University – CDOE| Self-Learning Material

len Returns length of list len([1,2,3,4,5,6,7,8,9,1

0])

10

concatenation Joins two lists [1,2,3,4,5]+[6,7,8,9,10] [1,2,3,4,5,6,7,8,9,10]

repetition Repeats elements in the

lists

[“Hello”,”World”]*2 [“Hello”,”World”,

“Hello”,”World”]

in Checks if the value is

present in the list

a‟ in[“a‟,‟e‟,‟i‟,‟o‟,‟u‟] True

not in Checks if the value is

not present in the list

3 not in [0,2,4,6,8] True

max Returns maximum value

in the list

lst1=[6,3,7,0,1,2, 4,9]

print(max(lst1))

9

min Returns minimum value

in the list

num_list=[6,3,7,0,1,2,

4,9]

print(min(num_list))

0

sum Adds the values in the

list that has numbers

num_list=[1,2,3,4,5,6,

7,8,9,10]

print(“SUM=”,sum(nu

m_list))

SUM=55

all Returns True if all

elements of the list are

true(or if the list is

empty)

num_list=[0,1,2,3]

print(all(num_list))

False

any Returns True if any

element of the list is

true. if the list is empty

return false

num_list=[6,3,7,0,1,2,

4,9]

print(any(num_list))

True

list converts

iterable(tuple,string,set,d

ictionary)

list1=list(“HELLO”)

print(list1)

[‘H’,’E’,’L’,’L’,’O’]

sorted Returns a new sorted

list. The original list not

sorted

list1=[3,4,1,2,7,8]

list2=sorted(list1)

print(list2)

[1,2,3,4,7,8]

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

100 Periyar University – CDOE| Self-Learning Material

4.1.6 – List Methods

Method & Description

cmp(list1,list2) It compares the elements of both the lists, list1 and list2.

len(list) It returns the length of the string, i.e., the distance from starting element to

last element.

max(list) It returns the item that has the maximum value in a list.

min(list) It returns the item that has the minimum value in a list.

list(seq) It converts a tuple into a list.

list.append(item) It adds the item to the end of the list.

list.count(item) It returns number of times the item occurs in the list.

list.extend(seq) It adds the elements of the sequence at the end of the list.

list.index(item) It returns the index number of the item. If item appears more than

one time, it returns the lowest index number.

list.insert(index,item) It inserts the given item onto the given index number while

the elements in the list take one right shift.

list.pop(item=list[-1]) It deletes and returns the last element of the list.

list.remove(item) It deletes the given item from the list.

list.reverse() It reverses the position (index number) of the items in the list.

list.sort([func]) It sorts the elements inside the list and uses compare function if

provided

pop Operator If we know the index of the element that we want to delete,

then we can use the pop operator.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

101 Periyar University – CDOE| Self-Learning Material

Example

list = [10,20,30,40]

a = list.pop(2)

print list

print a

Output

[10,20,40]

30

del Operator The del operator deletes the value on the provided index, but it

does not store the value for further use.

Example

list = [‘w’,‘x’,’y’,’z’]

del list(1)

print list

Output

 [‘w’, ‘y’, ‘z’]

remove Operator We use the remove operator if we know the item that we

want to remove or delete from the list (but not the index).

Example

list = [10,20,30,40]

 list.remove(10)

print list

Output

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

102 Periyar University – CDOE| Self-Learning Material

 [20,30,40]

Let’s Sum Up

In this section we have studied the various features of List in Python

Programming Language. How to create a List, access the elements in it, how to

delete or update the elements with the basic operations that can be performed in a

List. Finally discussed the functions and methods that can be performed in a List.

Check your progress -QUIZ

1. Which of the following will separate all the items in list?

a. * b. , c. ; d. & 19.

2. What is the repetition operator in lists?

a. * b. , c. ; d. &

3. Which of the following functions will sort a list?

a. list.sort b. list.sort([func]) c. list.sort[func] d. list.sort(func)

4. What will be the output of the given code? list = [‘john’, ‘book’, 123, 3.45, 105,

‘good’] >>>print (list[4:])

a. [3.45, 105, ‘good’] b. [‘john’, ‘book’, 123, 3.45]

c. [105, ‘good’] d. [123, 3.45] 22.

5. Which of the following functions will give the total length of a list?

a. Len b. len(list) c. max(len) d. max len(list)

SECTION 4.2: TUPLE

Like list, Tuple is another data structure supported by Python. It is very similar

to list but differs in two things.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

103 Periyar University – CDOE| Self-Learning Material

 First, a tuple is a sequence of immutable objects. This means you cannot

change the values in a tuple.

 Second, tuples uses parentheses to define its elements where as list uses

square brackets.

4.2.1 - Creating a Tuple

Creating a tuple is as simple as putting different comma-separated values.

Optionally you can put these comma-separated values between parentheses.

Syntax:

Tup1=(val1,val2,….)

where val (or values) can be an integer, a floating number, a character, or a string.

Examples

1) Tup1=() #creates an empty tuple.

 print(Tup1)

Output:

Note: no output will be displayed.

2) Tup1=(5) #creates a tuple with single element

print(Tup1)

Output:

 5

3) Tup1=(1,2,3,4,5) #creates a tuple of integers

print (Tup1)

Tup2=(„a‟,‟b‟,‟c‟,‟d‟) #creates a tuple of characters

print(Tup2)

Tup3=(“abc”,”def”,”ghi”) #creates a tuple of strings

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

104 Periyar University – CDOE| Self-Learning Material

print(Tup3)

Tup4=(1.2,2.3,3.4,4.5,5.6) #creates a tuple of floating point numbers

print(Tup4)

Tup5=(1,”abc”,2.3,‟d‟) #creates a tuple of mixed values

print(Tup5)

Output:

1,2,3,4,5

“a‟,‟b‟,‟c‟,‟d‟

“abc‟,‟def‟,‟ghi‟

1.2,2.3,3.4,4.5,5.6

1,‟abc‟,2.3,‟d‟

4) A Tuple with parenthesis

 print(“a‟,”bcd”,2,4.6)

Output:

A bcd2 4.6

5) Default Tuple without parenthesis

a,b=10,20

print(a,b)

Output:

10 20

4.2.2 – Accessing Tuple

Like strings and lists tuples indices also starts with 0. The operations

performed are slice, concatenate, etc.. To access values in tuple, slice operation is

used along with the index

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

105 Periyar University – CDOE| Self-Learning Material

Example :

1) Tup1=(1,2,3,4,5,6,7,8,9,10)

print(“Tup[3:6]=”,Tup1[3:6])

print(“Tup[:8]=”,Tup1[:4])

print(“Tup[4:]=”,Tup1[4:])

print(“Tup[:]=”,Tup1[:])

Output:

Tup[3:6]=(4,5,6)

Tup[:8]=(1,2,3,4)

Tup[4:]=5,6,7,8,9,10)

Tup[:]=(1,2,3,4,5,6,7,8,9,10)

The tuple values can be accessed using square brackets:

2) tuple =(1,2,3,4,5.5,‟str‟)

 print tuple

 print tuple[5]

 print tuple[1:5

OUTPUT:

1,2,3,4,5.5,‟str‟

‟str‟

2,3,4,5.5

4.2.3 Updating Tuple

As we all know tuples are immutable objects so we cannot update the values

but we can just extract the values from a tuple to form another tuple.

Example:

1) Tup1=(1,2,3,4,5)

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

106 Periyar University – CDOE| Self-Learning Material

Tup2=(6,7,8,9,10)

Tup3=Tup1+Tup2

print(Tup3)

Output:

(1,2,3,4,5,6,7,8,9,10)

2) Tup1=(1,2,3,4,5)

Tup2=(„sree‟,‟vidya‟,‟ram‟)

Tup3=Tup1+Tup2

print Tup3

Output:

(1,2,3,4,5,‟sree‟,‟vidya‟,‟ram‟)

4.2.4 Deleting element in Tuple

Deleting a single element in a tuple is not possible as we know tuple is a

immutable object. Hence there is another option to delete a single element of a tuple

i.e. you can create a new tuple that has all elements in your tuple except the ones

you don’t want.

Example

1) Tup1=(1,2,3,4,5)

del Tup1[3]

print Tup1

Output:

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

107 Periyar University – CDOE| Self-Learning Material

Traceback (most recent call last):

File "test.py", line 9, in <module>

del Tup1[3]

Type error: “tuple‟ object doesn’t support item deletion

2)delete the entire tuple by using del statement.

Tup1=(1,2,3,4,5)

del Tup1

print Tup1

Output:

 Traceback (most recent call last):

File "test.py", line 9, in <module>

print Tup1;

NameError: name 'Tup1' is not defined

Note: Note that exception is raised because you are now trying to print a tuple that

has already been deleted.

Basic tuple operations:

 Like strings and lists, you can also perform operations like concatenation,

repetition, etc. on tuples. The only difference is that a new tuple should be created

when a change is required in an existing tuple.

Operation Expression Output

Length len((1,2,3,4,5,6)) 6

Concatenation (1,2,3)+(4,5,6) (1,2,3,4,5,6)

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

108 Periyar University – CDOE| Self-Learning Material

Repetition (“Good..”)*3 Good.. Good.. Good..

Membership 5 in (1,2,3,4,5,6,7,8,9) True

Iteration for i in

(1,2,3,4,5,6,7,8,9,10):

print(i,end=” “)

1,2,3,4,5,6,7,8,9,10

Comparision(Use >,<,==) Tup1=(1,2,3,4,5)

Tup2=(1,2,3,4,5)

print(Tup1>Tup2)

True

Maximum max(1,3,5,7,9,0) 9

Minimum min(1,3,5,7,9,0) 0

Convert to tuple(converts a

sequence into a tuple)

tuple(“Hello”)

tuple([1,2,3,4,5])

(„H‟,‟e‟,‟l‟,‟l‟,‟o‟)

(1,2,3,4,5)

Sorting(The sorted() function

takes elements in a tuple and

returns a new sorted list (does not

sort the tuple itself)).

t=(4,56,-9)

sorted(t)

-9,4,56

4.2.5 Nested Tuple

Python allows you to define a tuple inside another tuple. This is called a

nested tuple.

Example

 stud=((“Anu”,”Bsc”,89.0),(“Banu”,”BA”,78.0),(”Chandru”,”BCom”,95.0))

 for I in stud:

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

109 Periyar University – CDOE| Self-Learning Material

 print(i)

Output

 (“Anu”,”Bsc”,89.0)

(“Banu”,”BA”,78.0)

(“Chandru”,”BCom”,95.0)

Example :- You can even specify a list within the tuple.

 stud=((“Anu”,[93,89,90,91])

 print(“Marks of “,stud[0], “is ..”,stud[1:])

Output

Marks of Anu is ..[93,89,90,91]

4.2.6 – Difference between List and Tuple

1 List is mutable and tuple is non-mutable.

2 List elements are represented by using square brackets. Tuple elements are

represented by using parenthesis.

3 To store tuple elements, Python Virtual Memory requires less memory. To store

list elements, Python Virtual Memory requires more memory.

4 Tuple elements can be access within less time, because they are fixed

(Performance is more). Performance is less compared with tuples.

Let’s Sum Up

In this section, the learner studied the various features Tuples in Python

Programming Language and how to create a tuple, access the elements in it? , how

to delete or update the elements with the basic operations that can be performed in a

tuple. Finally the section discussed the difference between a List and Tuple.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

110 Periyar University – CDOE| Self-Learning Material

Check your progress - QUIZ

6. Which of the following sequence data type is similar to the tuple?

a. Dictionaries b. List c. String d. function

7. In which operator are tuples enclosed?

a. { } b. [] c. <> d. ()

8. Which of the following is a Python tuple?

a. [7, 8, 9] b. {7, 8, 9} c. (7, 8, 9) d. <7,8,9>

9. What will be the output of the following code? >>>tuple = (‘john’, 100, 345,

1.67, ‘book’) >>>print(tuple[0])

a. John b. 0 c. Book d. error

10. Which of the following will not be correct if tuple = (10, 12, 14, 16, 18)?

a. print(min(tuple)) b. print(max(tuple)) c. tuple[4] = 20 d.

print(len(tuple)

SECTION 4.3: DICTIONARY

It is a data structure in which we store values as a pair of key and value. o

Each key is separated from its value by a colon (:), and consecutive items are

separated by commas. o The entire items in a dictionary are enclosed in curly

brackets ({})

Syntax:

dictionary_name = {key_1: value_1, key_2: value_2, key_3: value_3}

If there are many keys and values in dictionaries, then we can also write just one

key-value pair on a line to make the code easier to read and understand.

dictionary_name = {key_1: value_1, key_2: value_2, key_3: value_3 , ….}

 Keys in the dictionary must be unique and be of any immutable data type (like

Strings, numbers, or tuples), there is no strict requirement for uniqueness and

type of values.

 Values of a key can be of any type.

 Dictionaries are not Sequences, rather they are mappings.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

111 Periyar University – CDOE| Self-Learning Material

 Mappings are collections of objects that are store objects by key instead of by

relative position.

4.3.1– Creating Dictionary

A dictionary can be also created by specifying key-value pairs separated by a

colon in curly brackets as shown below. One key value pair is separated from the

other using a comma.

Example:

d= {'roll_no':'18/001','Name:':'Arav','Course':'B.tech'}

print(d)

Output:

 {'Name:': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

4.3.2 – Access Dictionary

In Dictionary, through key accessing values,

Example:

d={'Name': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

print('d[Name]:',d['Name'])

print('d[course]:',d['Course'])

print('d[roll_no]:',d['roll_no'])

Output:

d[Name]: Arav

d[course]: B.tech

d[roll_no]: 18/001

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

112 Periyar University – CDOE| Self-Learning Material

4.3.3– Update Dictionary

To add a new entry or a key-value pair in a dictionary, just specify the

keyvalue pair as you had done for the existing pairs.

Syntax

dictionary_ variable[key]= val

Example:

d={'Name': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

d['marks']=99 #new entry

print('d[Name]:',d['Name'])

print('d[course]:',d['Course'])

print('d[roll_no]:',d['roll_no'])

print('d[marks]:',d['marks'])

Output:

d[Name]: Arav

d[course]: B.tech

d[roll_no]: 18/001

d[marks]: 99

Example: To modify an entry, just overwrite the existing value

d={'Name': 'Arav', 'Course': 'B.tech', 'roll_no': '18/001'}

d['marks']=99 #new entry

print('d[Name]:',d['Name'])

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

113 Periyar University – CDOE| Self-Learning Material

print('d[course]:',d['Course'])

print('d[roll_no]:',d['roll_no'])

print('d[marks]:',d['marks'])

d[‘Course’]=’BCA’ #Updated entry

print('d[course]:',d['Course'])

OUTPUT:

d[Name]: Arav

d[course]: B.tech

d[roll_no]: 18/001

d[marks]: 99

d[course]: BCA

4.3.4 – Deleting elements in Dictionary

You can delete one or more items using the del keyword. To delete or

remove all the items in just one statement, use the clear () function. Finally, to

remove an entire dictionary from the memory, we can gain use the del statement as

del Dict_name.

syntax

del dictionary_variable[key]

Example:

dict_cubes = {1:1, 2:8, 3:9, 4:64, 5:125, 6:216}

print(“remove a particular item “)

dict_cubes.pop(3)

print(“Dictionary item:”, dict_cubes)

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

114 Periyar University – CDOE| Self-Learning Material

print(“remove an arbitrary item”

dict_cubes.popitem()

print(“remove an arbitrary item”

dict_cubes.popitem()

print(“Dictionary item:”, dict_cubes)

print(“remove a particular item “)

deldict_cubes[6] # delete a particular item

print(“Dictionary item: “,dict_cubes)

dict_cubes.clear() # remove all items

dict_cubes

del dict_cubes # delete the dictionary itself

 print (dict_cubes)

Output

remove a particular item

9

Dictionary item: {1: 1, 2: 8, 4: 64, 5: 125, 6: 216}

remove an arbitrary item

(1, 1)

remove an arbitrary item

(2, 8)

Dictionary item: {4: 64, 5: 125, 6: 216}

{4: 64, 5: 125}

{}

Traceback (most recent call last):

File “<pyshell#40>”, line 1, in <module>

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

115 Periyar University – CDOE| Self-Learning Material

printdict_cubes

NameError: name ‘dict_cubes’ is not define

4.3.5 – Dictionary Functions and Methods

 Traversing Traversing in dictionary is done on the basis of keys. For this, for

loop is used, which iterates over the keys in the dictionary and prints the

corresponding values using keys.

Example

We will define a function print_dict. Whenever a dictionary is passed as an

argument to this function, it will print the keys and values of the dictionary.

def print_dict(d):

for c in d:

print c,d[c]

dict1 = {1:’a’,2:’b’,3:’c’,4:’d’}

print_dict(dict1)

OUTPUT:

1 a

2 b

3 c

 4 d

 Membership Using the membership operator (in and not in), we can test

whether a key is in the dictionary or not. We have seen the in operator earlier as well

in the list and the tuple. It takes an input key and finds the key in the dictionary. If the

key is found, then it returns True, otherwise, False.

Example

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

116 Periyar University – CDOE| Self-Learning Material

cubes = {1:1, 2:8, 3:27, 4:64, 5:125, 6:216}

print(3 in cubes)

print(7 not in cubes)

print(10 in cubes)

Output:

True

True

False

Built-In Dictionary Methods

Function & Description

1. all(dict) It is a Boolean type function, which returns True if all keys of dictionary

are true (or the dictionary is empty).

2. any(dict) It is also a Boolean type function, which returns True if any key of the

dictionary is true. It returns false if the dictionary is empty.

3. len(dict) It returns the number of items (length) in the dictionary.

4. cmp(dict1,dict2) It compares the items of two dictionaries.

5. sorted(dict) It returns the sorted list of keys.

6. str(dict) It produces a printable string representation of the dictionary.

7. dict.clear() It deletes all the items in a dictionary at once.

8. dict.copy() It returns a copy of the dictionary.

9. dict.fromkeys() It creates a new dictionary with keys from sequence and values

set to value.

10. dict.get(key, default=None) For key key, returns value or default if key not in

dictionary.

11. dict.has_key(key) It finds the key in dictionary; returns True if found and false

otherwise.

12. dict.items() It returns a list of entire key: value pair of dictionary.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

117 Periyar University – CDOE| Self-Learning Material

13. dict.keys() It returns the list of all the keys in dictionary.

14. dict.setdefault (key, default=None) Similar to get(), but will set dict[key]=default

if key is not already in dict.

15. dict.update(dict2) It adds the items from dict2 to dict.

16. dict.values() It returns all the values in the dictionary

4.3.6 – Difference between List and Dictionary

These are the main differences between a list and a dictionary.

 First, a list is an ordered set of items. But, a dictionary is a data structure that

is used for matching one item (key) with another (value).

 Second, in lists, you can use indexing to access a particular item. But, these

indexes should be a number. In dictionaries, you can use any type(immutable) of

value as an index.

 Third, lists are used to look up a value whereas a dictionary is used to take

one value and look up another value. For this reason, dictionary is also known as a

lookup table.

 Fourth, the key-Value pair may not be displayed in the order in which it was

specified while defining the dictionary. This is because Python uses complex

algorithms(called hashing) to provide fast access to the items stored in the

dictionary. This also makes dictionary preferable to use over a list.

Let’s Sum Up

In this section we have studied the various features Dictionary in Python

Programming Language. How to create a Dictionary, access the elements in it, how

to delete or update the elements with the basic operations that can be performed in a

Dictionary. Finally discussed the difference between a List and Dictionary.

.

Check your progress - QUIZ

11. Which core data type in Python is an unordered collection of key-value pairs?

a. Tuple b. dictionary c. function d. list

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

118 Periyar University – CDOE| Self-Learning Material

12. In which of the following operators are dictionaries enclosed?

a. { } b. () c. [] d. <>

13. Which of the following represent keys in the dictionary?

a. function or list b. numbers or list

c. strings or functions d. numbers or strings

14. Which operator is used to access the values in dictionary?

a. { } b. () c. [] d. <>

15. Which of the following forms do dictionaries appear in?

a. keys and values b. only keys c. list and keys d. only values

UNIT SUMMARY

In this unit, the learner had learned about list which is a collection of items or

elements; the sequence of data in a list is ordered. The elements or items in a list

can be accessed by their positions, i.e., indices. Lists are mutable which means that

we can change the value of any element inside the list at any point of time. Tuples

are the sequences of different types of values. Tuples are immutable and thus the

elements or values cannot be modified. A dictionary is a mapping between some set

of keys and values. Each key is associated with a value. The mapping of a key and

value is called a key-value pair and together they form one item or element. The

values in a dictionary are not unique and can be duplicated, but the keys in the

dictionary are unique. The difference between the accessing methods of dictionary is

that when the key is not found in dictionary, it returns none instead of KeyError.

Dictionaries are mutable and thus the elements or values can be modified.

GLOSSARY

LIST: It is a series or a sequence of different data items.

ELEMENT: An element is a value in the list, also called item.

INDEX: It is an integer value that indicates the position of an element in a list.

LIST TRAVERSAL: Accessing all the items in a list.

OBJECT: It is something a variable can refer to. An object has a type and value.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

119 Periyar University – CDOE| Self-Learning Material

EQUIVALENT: It means having equal values.

IDENTICAL: It means same objects (which implies equivalence).

TUPLE: Tuples, just like lists, are the sequence or series of different types of values

that are separated by commas (,).

TUPLE ASSIGNMENT: It allows assignment of values to a tuple of variables on the

left side of assignment from the tuple of values on the right side of the assignment.

VARIABLE-LENGTH ARGUMENT TUPLES: A variable number of arguments can

also be passed to a function. A variable name which is preceded by an asterisk (*)

collects the arguments into a tuple.

CONCATENATION: This operator works in tuples in the same way as in lists. This

operator concatenates two tuples. This is done by the + operator in Python.

REPETITION: This operator repeats the tuples a given number of times. Repetition

is performed by * operator.

in OPERATOR: This operator tells the user whether the given element exists in the

tuple or not. It gives a Boolean output, i.e., TRUE or FALSE.

ITERATION: Iteration can be done in tuples using for loop. It helps in traversing the

tuple.

len(tuple): It returns the length of the tuple.

DICTIONARY: The Python dictionary is an unordered collection of items or

elements. The dictionary has a key: value pair.

KEY: It is used to get the value in the dictionary.

KEY-VALUE: This pair represents the items in the dictionary

SELF – ASSESSMENT QUESTIONS

1. Explain list with its syntax.

2. List out the methods in list with example

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

120 Periyar University – CDOE| Self-Learning Material

3. What is a tuple and how is it created in Python?

4. How are the values in a tuple accessed?

5. What are the different methods used in deleting elements from dictionary?

EXERCISES

1. How can we add an element in the list? Write a program to insert 32 to the fourth

position in the given list [1, 4, 23, 56, 90].

2. Write a program to reverse a list.

3. Consider the tuple (1,3,5,7,9,2,4,6,8,10). Write a program to print half its values

in one line and the other half in the next line.

4. Write a python program to demonstrate tuples functions and operations

5. Write a python program to demonstrate dictionary functions and operations

QUIZ - ANSWERS

1. b,

2. a.*

3. b. list.sort([func])

4. [105,’good’]

5. b.len(list)

6. b.list

7. d.()

8. (7,8,9)

9. a.john

10. c. tuple[4] = 20

11. b.dictionary

12. a.{}

13. d.numbers or strings

14. c.[]

15. a.keys and values

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

121 Periyar University – CDOE| Self-Learning Material

SUGGESTED READINGS

1. Yashavant Kanetkar and Aditya Kanetkar, “Let us Python Solutions”, -bpb

publications, 6th Edition, 2023

2. Ralph T.Burwell,” Fundamentals of Python: Basics of Python coding and step-

by-step instructions for complete novices” Kindle Edition

3. David Amos, Dan Bader, Joanna Jablonski “,PythonBasics:A Practical

Introduction to Python 3”, Real Python (Realpython.Com) Fourth Edition, 2021

OPEN SOURCE E-CONTENT LINKS

 https://www.python.org/about/gettingstarted/

 https://www.guru99.com/python-tutorials.html

 https://www.w3schools.com/python/

 https://docs.python.org/3/tutorial/index.html

 https://www.geeksforgeeks.org/python-programming-language/

REFERENCES

1. Reema Thareja,”Python Pogramming using Problem Solving approach”,

Oxford Higher Education,

2. Fabio Nelli, Python Data Analytics”, APress.

3. VamsiKurama, “Python Programming: A Modern Approach”, Pearson

Education.

4. Mark Lutz, “Learning Python”, Orielly.

5. E Balagurusamy , “Problem Solving and Python Programming”, McGraw Hill

Education (India) Private Limited,

https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22David+Amos%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAU
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Dan+Bader%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAY
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Joanna+Jablonski%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAc
https://www.python.org/about/gettingstarted/
https://www.guru99.com/python-tutorials.html
https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/index.html
https://www.geeksforgeeks.org/python-programming-language/

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

122 Periyar University – CDOE| Self-Learning Material

PYTHON PROGRAMMING

UNIT 5 - PYTHON PROGRAMMING

Python File Handling: Types of files in Python - Opening and Closing

files-Reading and Writing files: write() and writelines() methods-

append() method – read() and readlines() methods – with keyword –

Splitting words – File methods - File Positions- Renaming and

deleting files

Python File Handling

Section Topic Page No.

UNIT - V

Unit Objectives

Section 5.1 Python File Handling 123

5.1.1 Types of Files in Python 124

5.1.2 Opening and Closing Files 125

5.1.3 Reading and Writing Files 129

5.1.3.1 write() and writelines() method 129

5.1.3.2 append() method 130

5.1.3.3 read() and readline() method 131

5.1.3.4 with keyword 133

5.1.3.5 Splitting words 134

5.1.3.6 File methods 135

5.1.4 File Positions 135

5.1.5 Renaming and deleting Files 137

 Let Us Sum Up

 Check Your Progress

5.2 Unit- Summary 139

5.3 Glossary 140

5.4 Self- Assessment Questions 140

5.5 Exercises 140

5.6 Answers 141

5.7 Suggested Readings 141

5.8 Open Source E-Content Links 142

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

123 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVES
In this unit, learners will have a elaborate understanding of File concepts,

various file types in Python. How to write the contents into a file using write or

writeline method. Similarly how to read the contents from the file using read or

readline method. Before doing any operations in a file it has to be opened which has

various modes like read, write, append, binary or text, etc., Once the job gets

completed it has to be closed. While reading a file user can navigate to a particular

location in a file. The way to rename or delete a file is also discussed.

SECTION 5.1: PYTHON FILE HANDLING

 A file is a collection of data stored on a secondary storage device like hard

disk. When a program is being executed, its data stored in random access memory

(RAM). Though RAM can be accessed faster by the CPU, it is volatile, which means

when the program ends, or the computer shuts down, all the data is lost. If you want

the data for future use, then it has to be stored in a permanent or non-volatile

storage media.

 Data on non-volatile storage media is stored in named locations on the media

called files. To work with files first we must open it, read the contents that you

previously written in it or write some new content into it. After using the file it should

be closed.

 A file is basically used because real life applications involve large amount of

data and in such situations console oriented I/O operations pose two major

problems:

 First, it becomes cumbersome and time consuming to handle large amount of

data through terminals.

 Second, when doing I/O using terminal, the entire data is lost when either the

program is terminated or computer is turned off. Therefore, it becomes

5.9 References 142

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

124 Periyar University – CDOE| Self-Learning Material

necessary to store data on a permanent storage(the disks) and read

whenever necessary, without destroying the data.

5.1.1 – Types of Files in Python

Python supports two types of files

 ASCII Text Files

 Binary Files

ASCII Text Files

A text file is a stream of characters that can be sequentially processed by a

computer in forward direction. For this reason a text file is usually opened for only

one kind of operation reading, writing, or appending) at any given time. Because text

files can process characters, they can only read or write data one character at a

time. In Python, a text stream is treated as a special kind of file. Depending on the

requirements of the operating system and on the operation that has to be performed

(read/write operation) on the file, the newline characters may be converted to or from

carriage-return/linefeed combinations. Besides this, other character conversions may

also be done to satisfy the storage requirements of the operating system. However,

these conversions occur transparently to process a text file. In a text file, each line

contains zero or more characters and ends with one or more characters.

Another important thing is that when a text file is used, there are actually two

representations of data- internal or external. For example, an integer value will be

represented as a number that occupies 2 or 4 bytes of memory internally but

externally the integer value will be represented as a string of characters representing

its decimal or hexadecimal value.

Note: In a text file, each line of data ends with a newline character. Each file

ends with a special character called end-of-file (EOF) Marker.

Binary Files

A binary file is a file which may contain any type of data, encoded in binary

form for computer storage and processing purposes. It includes files such as word

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

125 Periyar University – CDOE| Self-Learning Material

processing documents, PDFs, images, spreadsheets, videos, zip files and other

executable programs. Like a text file, a binary file is a collection of bytes. A binary

file is also referred to as a character stream with following two essential differences.

A binary file does not require any special processing of the data and each

byte of data is transferred to or from the disk unprocessed. Python places no

constructs on the file, and it may be read from, or written to, in any manner the

programmer wants. While text files can be processed sequentially, binary files, on

the other hand, can be either processed sequentially or randomly depending on the

needs of the application.

Note: Binary files store data in the internal representation format. Therefore,

an integer value will be stored in binary form as 2 byte value. The same format is

used to store data in memory as well as in files. Like Text files, Binary files also ends

with an EOF.

When we want to read from or write to a file we need to open it first. When we

are done, it needs to be closed, so that resources that are tied with the file are freed.

Python has many in-built functions and methods to manipulate files. Hence, in

Python, a file operation takes place in the following order

1. Open a file

2. Read or write (perform operation)

3. Close the file

5.1.2 – Opening and Closing Files

Before reading from or writing to a file, you must first open it using Python’s

built-in open() function. This function creates a file object, which will be used to

invoke methods associated with it.

Syntax

fileObj = open(file_name [, access_mode])

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

126 Periyar University – CDOE| Self-Learning Material

 file_name is a string value that specifies name of the file that you want to

access

 access_mode indicates the mode in which the file has to be opened, i.e.

read, write, append, etc. Access mode is an optional parameter and the

default file access mode is read(r).

EXAMPLE

 file=open(“file1.txt”,”rb”)

print(file)

OUTPUT

 <open file ‘file1.txt’,mode ‘rb’ at 0x02A850D0>

Access modes

Python supports the following access modes for opening a file those are:

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

127 Periyar University – CDOE| Self-Learning Material

The File Object Attributes

Once a file is successfully opened, a file object is returned. Using this file

object, you can easily access different type of information related to that file. This

information can be obtained by reading values of specific attributes of the file. The

Following table shows list attributes related to file object.

 fileobj.closed – Returns True is file is closed and False otherwise

 fileobj.mode – Returns access mode with which file has been opened

 fileobj.name – Retrurns the name of the file

Example

open a file

f = open(“C:/Python27/test.txt”,”wb”)

print (f.name)

print (f.closed)

print (f.mode)

print (f.softspace)

f.close() # Close the opened file

 print (f.closed)

Output :

C:/Python27/test.txt

False

Wb

O

True

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

128 Periyar University – CDOE| Self-Learning Material

Closing A File

The close() method is used to close the file object. Once a file object is

closed, you cannot further read from or write into the file associated with the file

object. While closing the file object the close() flushes any unwritten information.

Although, Python automatically closes a file when the reference object of a file is

reassigned to another file, but as a good programming habit you should always

explicitly use the close() method to close a file.

Syntax:

fileObj.close()

The close() method frees up any system resources such as file descriptors,

file locks, etc. that are associated with the file. Once the file is closed using the

close() method, any attempt to use the file object will result in an error.

Example: Write a Python program to assess if a file is closed or not..

file = open('File1.txt','wb')

print('Name of the file :',file.name)

print('File is closed:',file.closed)

print('File is now being closed')

file.close()

print('File is closed',file.closed)

print(file.read())

Output:

Name of the file : File1.txt

File is closed: False

File is now being closed

File is closed True

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

129 Periyar University – CDOE| Self-Learning Material

Traceback (most recent call last):

 File "D:/Python/sample.py", line 7, in <module>

 print(file.read())

io.UnsupportedOperation: read

5.1.3 – Reading and Writing Files

The read() and write() are used to read data from file and write data to file

respectively. Both functions are used to manipulate data through files.

5.1.3.1 – write() and writelines() methods

The write() method is used to write a string to an already opened file. Of

course this string may include numbers, special characters or other symbols.While

writing data to a file, you must remember that the write() method does not add a

newline character ('\n') to the end of the string.

Syntax

fileObj.write(string)

Example:Program that writes a message in the file,data.txt

file=open('data.txt','w')

file.write('hello cse we are learning python programming')

file.close()

print('file writing successful')

Output:

file writing successful

writeline() method:

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

130 Periyar University – CDOE| Self-Learning Material

The writelines() method is used to write a list of strings.

Example: Program to write to a file using the writelines() method

file=open('data.txt','w')

lines=['hellocse',' hope to enjoy',' learning','python programming']

file.writelines(lines)

file.close()

print('file writing successful')

Output:

file writing successful

5.1.3.2 – append() method

Once you have stored some data in a file,you can always open that file again

to write more data or append data to it. To append a file, you must open it using „a‟

or „ab‟ mode depending on whether it is text file or binary file. Note that if you open a

file with „w‟ or „wb‟ mode and then start writing data into it, then the existing contents

would be overwritten.

Example:Program to append data to an already existing file

file=open('data.txt','a')

file.write('\nHave a nice day')

file.close()

print('Data appended successful')

Output:

Data appended successful

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

131 Periyar University – CDOE| Self-Learning Material

data.txt

hellocsehope to enjoylearning python programming

Have a nice day

5.1.3.3 – read() and readlines() methods

The read() method is used to read a string from an already opened file. As

said before, the string can include, alphabets, numbers, characters or other symbols.

Syntax

fileObj.read([count])

 count is an optional parameter which if passed to the read() method specifies

the number of bytes to be read from the opened file.

The read() method starts reading from the beginning of the file and if count is

missing or has a negative value then, it reads the entire contents of the file (i.e., till

the end of file).

Example1:Program to print the first 8 characters of the file data.txt

file=open('data.txt','r')

print(file.read(8))

file.close()

Output:

hellocse

Example2:Program to display the content of file using for loop

file=open('data.txt','r')

for line in file:

 print(line)

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

132 Periyar University – CDOE| Self-Learning Material

file.close()

Output:

hellocsehope to enjoylearningpython programming

Have a nice day

read() methods returns a newline as “\n‟

readline() Method

It is used to read single line from the file. This method returns an empty string

when end of the file has been reached.

 Example Program to demonstrate the usage of readline() function

file=open('data.txt','r')

print('firtsline:',file.readline())

print('second line:',file.readline())

print('third line:',file.readline())

 file.close()

Output:

firtsline: hellocsehope to enjoylearningpython programming

second line: Have a nice day

third line:

readlines() Method

readlines() Method is used to read all the lines in the file.

Example:Program to demonstrate readlines() function

file=open('data.txt','r')

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

133 Periyar University – CDOE| Self-Learning Material

print(file.readlines())

file.close()

Output:

['hellocsehope to enjoylearningpython programming\n', 'Have a nice day']

list() Method

list() method is also used to display entire contents of the file. you need to

pass the file object as an argument to the list() method.

Example: display the contents of the file data.txt using the list() method

file=open('data.txt','r')

print(list(file))

file.close()

Output:

['hellocsehope to enjoylearningpython programming\n', 'Have a nice day']

5.1.3.4 – with keyword

It is good programming habit to use the with keyword when working with file

objects. This has the advantage that the file is properly closed after it is used even if

an error occurs during read or write operation or even when you forget to explicitly

close the file. When you open a file for reading, or writing, the file is searched in the

current directory. If the file exists somewhere else then you need to specify the path

of the file.

Example:

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

134 Periyar University – CDOE| Self-Learning Material

5.1.3.5 – splitting words

Python allows you to read line(s) from a file and splits the line (treated as a

string) based on a character. By default, this character is space but you can even

specify any other character to split words in the string.

Example: Program to split the line into series of words and use space to

perform the split operation

with open('data.txt','r') as file:

 line=file.readline()

 words=line.split()

 print(words)

Output:

['hellocsehope', 'to', 'enjoylearningpython', 'programming']

5.1.3.6 – File methods

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

135 Periyar University – CDOE| Self-Learning Material

5.1.4 – File Position

With every file, the file management system associates a pointer often known

as file pointer that facilitates the movement across the file for reading and/ or writing

data. The file pointer specifies a location from where the current read or write

operation is initiated. Once the read/write operation is completed, the pointer is

automatically updated. Python has various methods that tells or sets the position of

the file pointer.

For example, the tell() method tells the current position within the file at which

the next read or write operation will occur. It is specified as number of bytes from the

beginning of the file. When you just open a file for reading, the file pointer is

positioned at location 0, which is the beginning of the file.

Syntax

seek(offset[, from])

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

136 Periyar University – CDOE| Self-Learning Material

 offset argument indicates the number of bytes to be moved

 from argument specifies the reference position from where the bytes are to be

moved.

Example: Program that tells and sets the position of file pointer

File1.txt

Hello All,

Hope you are enjoying learning

python

 file=open(“File1.txt”,”rb”)

 print(“Position of file pointer before reading is :”,file.tell())

 print(file.read(10)

 print(“Position of file pointer after reading is :”,file.tell())

 print(“Setting 3 bytes from the current position of file pointer”)

 file.seek(3,1)

 print(file.read())

 file.close()

OUTPUT:

 Position of file pointer before reading is :0

 Hello All,

 Position of file pointer after reading is : 10

 Setting 3 bytes from the current position of file pointer

 pe you are enjoying learning python

5.1.5 – Renaming and Deleting Files

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

137 Periyar University – CDOE| Self-Learning Material

The os module in Python has various methods that can be used to perform

fileprocessing operations like renaming and deleting files. To use the methods

defined in the os module, you should first import it in your program then call any

related functions.

 rename() Method: The rename() method takes two arguments, the current

filename and the new filename.

Syntax

os.rename(old_file_name, new_file_name)

 remove() Method: This method can be used to delete file(s). The method

takes a filename (name of the file to be deleted) as an argument and deletes

that file.

Syntax

os.remove(file_name)

Example: Program to rename file ‘File1.txt’ to ‘student.txt’

 import os

 os.rename(“File1.txt”,”students.txt”)

 print(“File Renamed”)

Output:

 File Renamed

Example Program to delete a file named File1.txt

 import os

 os.remove(“File1.txt”)

 print(“File Deleted”)

Output:

 File Deleted

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

138 Periyar University – CDOE| Self-Learning Material

Let’s Sum Up

In this section, the user learned the concept of File. How to read a text file

character by character or line by line. The text content can be written into text file

using write() or writeline() method. Although file I/O operations is almost same as

I/O, the only difference is that when doing file I/O, the user must specify the name of

the file from which data should be read / written along with mode. The default mode

is read. Using append() the content can be added to the existing file. The split()

method used to split the words in a file. The file pointer can be moved to a particular

location using seek() function and the current location in a file can be tracked using

tell() method.

Check your progress

1. Which of the following functions is used to open a file in Python?

a. open{} b. open() c. open[] d. Open()

2. What is a file object also known as?

a. Object source b. File c. Object file d. Handle

3. Which of the following is the default mode while opening a file?

a. Binary b. Number c. Text d. None

4. What is the syntax for opening a file in current directory?

a. f = open(“xyz.txt”,’r’) b. f = open(“xyz.txt,’w’)

c. f = open(“xyz.txt,’a’) d. f = open(“xyz.txt”)

5. At what position will the file pointer be placed whenever we open a file for

reading or writing?

a. Middle b. Beginning c. Second line d. End

6. What is the default file access mode?

a. write (w) b. append c. read (r) d. None

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

139 Periyar University – CDOE| Self-Learning Material

7. Whenever we open a file for appending, at what position will the file pointer be

placed?

a. Middle b. Beginning c. Second line d. End

8. Which of the following statements is not correct?

a. When a file is opened for reading, if the file does not exist, an empty file will

be opened.

b. When a file is opened for writing, overwrites the file if the file exists.

c. When a file is opened for writing, if the file does not exist, creates a new file

for writing.

d. When a file is opened for reading, if the file does not exist, an error occurs.

9. Which of the following statements is correct while using ‘a+’ mode for opening

a file?

a. Opens a file for appending only

b. Opens a file for writing only

c. Opens a file for both appending and reading

d. Opens a file for both appending and writing

10. What is the syntax to close a file?

a. file.close() b. close() c. close(); d. fileObject.close()

UNIT SUMMARY

A Function is a block of code that performs a specific task. In this unit, we

have discussed various aspects of functions such as how to create functions, their

scope, passing arguments to function. In addition to these topics, file handling

operations are also discussed in details such as how to interact with file, copying,

deleting, etc.

GLOSSARY

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

140 Periyar University – CDOE| Self-Learning Material

 Delimiter one or more characters used to specify the boundary between

different parts of text.

 File A stream of information that is usually stored on a permanent storage

media like hard drive, floppy disk, CD-ROM, etc.

 File handle An object that allows you to manipulate / read/ write/ close the

file.

 File Path A sequence of directory names that specifics the exact location of a

file.

 Non-volatile memory Memory that can store data even when the power

supply to the computer system is switched off.

 Text file A file having printable characters organized into lines separated by

newline characters.

 Volatile memory Memory that loses data as soon as the computer system is

switched off. RAM is an example of volatile memory.

SELF – ASSESSMENT QUESTIONS

1. What are the different access modes in which you can open a file?

2. With example explain any three attributes of file object.

3. Is it mandatory to call close() method after using a file ?

4. Explain the syntax of read method.

5. How will you rename and delete a file in python?

EXERCISES

1. Write a program that tells and set the position of the file pointer.

2. Write a program that accepts filename as input, open the file and count the

number of times a character appears in the file.

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

141 Periyar University – CDOE| Self-Learning Material

3. Write a program that reads data from a file and calculates the percentage of

vowels and consonants in the file.

4. Write a program that reads a file and prints only those lines that has the word

‘print’.

5. Write a program that has several lines. Each line begins with a line number.

Read this file line by line and copy the line in another file but do not copy the

numbers.

ANSWERS

1. b. open()

2. d. Handle

3. c. Text

4. a. f = open(“xyz.txt”,’r’)

5. b. Beginning

6. c. read (r)

7. b. Beginning

8. a. When a file is opened for reading, if the file does not exist, an empty file will

be opened

9. c. Opens a file for both appending and reading

10. d. fileObject.close()

SUGGESTED READINGS

1. Yashavant Kanetkar and Aditya Kanetkar, “Let us Python Solutions”, -bpb

publications, 6th Edition, 2023

2. Ralph T.Burwell,” Fundamentals of Python: Basics of Python coding and step-by-

step instructions for complete novices” Kindle Edition

3. David Amos, Dan Bader, Joanna Jablonski · “,PythonBasics:A Practical

Introduction to Python 3”, Real Python (Realpython.Com) Fourth Edition, 2021

OPEN SOURCE E-CONTENT LINKS

 https://www.python.org/about/gettingstarted/

https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.amazon.in/sspa/click?ie=UTF8&spc=MTo3MjI1OTE4Mjc0MjUwMTQ3OjE3MTY4MDIyNjU6c3BfYXRmOjMwMDA4NzY1ODQxMjEzMjo6MDo6&url=%2FLet-us-Python-Solutions-6th%2Fdp%2F9355515472%2Fref%3Dsr_1_1_sspa%3Fdib%3DeyJ2IjoiMSJ9._ldn5uu02FXCaY-tJjfLZRRaMSHSNlKRE_DzshUM1QhYs-h2rSdGdAMobVx6OEZdF8q2onWnQrxEReW3TwallPOwVSTU5dOusq2fG222Q9aKHxR0fZqqoY2LFz0KqXR3WGAjblorMInc6sQAQrrZSjiwHjzQFL8nZ0kGHhBUwtQ8RJ75xwn4iJ2i6i0364O6R1hzYGjx9ZcJ19RkcBdh-BFnNCJSpC3msTfmtdJuXTg.nBILJmH8PBs8dHkAFrZzJvdAMpxoGoeAkHNPzIFPcxg%26dib_tag%3Dse%26keywords%3Dpython%2Bbooks%2Bfor%2Bbeginners%2Bto%2Badvanced%26qid%3D1716802265%26sr%3D8-1-spons%26sp_csd%3Dd2lkZ2V0TmFtZT1zcF9hdGY%26psc%3D1
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22David+Amos%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAU
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Dan+Bader%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAY
https://www.google.com/search?sa=X&sca_esv=b1bdec1098d0cba3&sca_upv=1&biw=1536&bih=730&tbm=bks&tbm=bks&q=inauthor:%22Joanna+Jablonski%22&ved=2ahUKEwjP8Mz-w62GAxVUR2cHHTcQBJ8Q9Ah6BAgGEAc
https://www.python.org/about/gettingstarted/

CDOE – ODL B.Sc CS – SEMESTER I PYTHON PROGRAMMING

142 Periyar University – CDOE| Self-Learning Material

 https://www.w3schools.com/python/

 https://docs.python.org/3/tutorial/index.html

 https://www.geeksforgeeks.org/python-programming-language/

REFERENCES

1. Reema Thareja,””Python Pogramming using Problem Solving approach”,

Oxford Higher Education,

2. Dr. R. NageswaraRao, “Core Python Programming”, First Edition, 2017,

Dream tech Publishers.

3. VamsiKurama, “Python Programming: A Modern Approach”, Pearson

Education.

4. Mark Lutz, “Learning Python”, Orielly.

5. E Balagurusamy , “Problem Solving and Python Programming”, McGraw Hill

Education (India) Private Limited,

https://www.w3schools.com/python/
https://docs.python.org/3/tutorial/index.html
https://www.geeksforgeeks.org/python-programming-language/

